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Abstract. We analyse accuracy, privacy, compression-ratio and compu-
tational overhead of selected aggregation and perturbation methods in
the Internet of Things (IoT). We measure over a real-life data set of de-
tailed energy consumption logs of a single family household. We modelled
privacy by simple, threshold-driven machine-learning algorithms that ex-
tract features of behaviour. The accuracy of those extraction is used as
privacy metric. We state for di↵erent parameters of the aggregation, re-
duction and perturbation if the output still allows detections, as this
follows the EU’s data protection principle of “minimisation”: increased
privacy due to less detailed data, but still good enough accuracy for the
purpose. The result is that many detections for sensible predictions and
intelligent reactions are still possible with lower quality data.
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1 Introduction

The IoT opens up a whole new dimension of data gathering, processing and
utilisation. The temporal and spatial coverage is foreseen to be on an unprece-
dented scale. The amount of data which could be accumulated in an environment
enriched with ubiquitous, unobtrusive computing devices is virtually immeasur-
able [6, p.336]. Aggregation of measurements before transmitting is a technique
commonly proposed to limit not only the amount of data that is transferred on-
wards to the next hop, but also this techniques has been suggested to decrease
the privacy sensitivity of data.

Provided that a lot of Internet-of-Things (IoT) devices currently reaching
the markets are focussed on the Smart Home [1], this work is concerned with
the possibility to deduct behavioural patterns from the energy readings gathered
for in-house circuits. Current market ready IoT deployments gather data at a
few central places, e.g., energy consumption at smart meters, needing only the
deployment of few devices. Still, new applications shall be able to evolve based on
top of that data, e.g., provide an intelligence and self-adapting home environment
learning from the energy patterns.
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This case study is mainly motivated by the fact that under EU privacy laws
the data gathered must be “necessary for the performance of a contract to which
the data subject is party” [2]. We wanted to know if we really need the high pre-
cision in which the IoT could gather data. We applied and evaluated di↵erent
parameters for aggregation and perturbation on a real-life data set in order to
find what level of reduced data quality and hence additional privacy we could
achieve. Alongside, aggregation yields compression. Privacy, in this paper is not
geared towards disguising the identity of the datas subject, but rather towards
lowering data quality to the bare “necessity” [2] to suit a given purpose of an
application. Purpose is based on European legislation, e.g., [5], meaning that get-
ting data such that an application can learn and forecast behavioural patterns,
like detecting and then deducting that you are usually at home between 12-16
on saturdays and sundays, but away on weekdays, can be a legitimate purpose,
e.g. to adjust your heating system and schedule your parcel delivery. Hence, a
data subject could give their informed consent to just that purpose. However,
the question ‘How low can the granularity and data quality become such that
the application still works?’ was still unanswered [10].

Scope and Methodology: In this work we present a case study on electri-
cal energy consumption data. According to M. Jawurek [7, p. 80], aggregation
can be applied on three di↵erent dimensions: spatial, temporal or arbitrary.
We therefore gathered several detailed energy consumption profiles of several
in-house circuits of one family household and hence we will focus on temporal
aggregation. As we have detailed self observation logs from the family about
timing of actions, e.g. using the microwave to heat milk for the morning co↵ee,
additionally we know what devices each circuit contains. From this we devised
threshold machine learning algorithms (see Sect. 3.1) that correlate energy mea-
surements with actions (e.g., sleep, wake, watching TV, vacation) performed.
These algorithms allow identifying behavioural patterns in traces and later make
assumptions on the privacy gained by aggregation and perturbation methods.

Data Set: Data was gathered in one household of a family, using in-circuit
’smart meters’ measuring the energy consumption of devices connected to each
electrical circuit. Each in-circuit-smart-meter sends a ’tick’ on every consumed
Watt hour (1 Wh) that is recorded together with a timestamp1. The data set
contains separately the energy consumption of several circuits: (a) living room

with a TV (approx. 100W) and several independent lights (150W in total), (b)
study room with computers and a TV (approx. 40-70W). The data was collected
over a period of seven months with around 926,000 entries.

2 Aggregation, Perturbation and Reduction

We classified the di↵erent aggregation methods we have been using into three
di↵erent categories: (a) Aggregation over time, (b) Perturbation of the data with
noise, (c) Reduction.

1 based on volkszaehler.org



2.1 Aggregation

Aggregation is a mechanism to increase privacy by merging di↵erent single data
points. It is not geared towards disguising the identity of the data’s subject, but
attempts to enhance privacy by lowering the accuracy of data, hereby limiting the
possibility to deduce private information. According to M. Jawurek ( [7],p.80),
aggregation can be applied on three di↵erent dimensions: spatial, temporal or
arbitrary. For this first instance of the case study we calculated the harmonic
and the arithmetic mean over di↵erent time intervals.
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It showed to be tolerant towards energy peaks and o↵ers a good accuracy. Hence,
we choose the harmonic mean for aggregation.
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Already few peaks negatively a↵ected the accuracy of the aggregated result in
many of our cases. Hence, we did not choose an arithmetic mean.

Aggregation over time interval For the aggregation we can use the di↵erent
arithmetic functions mentioned. The time interval can be adjusted to suit the
application. We ran with di↵erent intervals, i.e., 10 minutes, 1, 4, 8 and 24 hours.

2.2 Perturbation

Perturbation and the reduction of resolution both aim to abstract data to a
level, on which the deduction of private information can hardly be performed.
The basic method of perturbation relies on the introduction of random noise (i.e.
data fragments) to the data items respectively the final aggregate, causing a dis-
tortion in the original values. Adding su�cient noise to prevent an attacker from
deriving data items or patterns from the result while preserving the utility of
the data is challenging [7, p.74-75]. In some cases, this challenge is di�cult if not
impossible to overcome. For example consider perturbation on an energy profile
to avoid burglary when you are away. Perturbation needs to add enough noise to
prevent an attacker from di↵erentiating whether the inhabitants are present or
absent. At the same time, exact data might be needed to perform certain com-
putations, e.g. for the purpose of billing [7]. Consequently, perturbation is only
applicable if the calculations don’t need to be perfectly accurate. Furthermore,
random perturbation carries the risk of revealing some kind of structure within
the randomness, which could be used to compromise the original data set [9].

In this case study we tuned perturbation by adding di↵erent noise. First and
foremost, the parameters to identify are a suitable maximum and minimum noise
to be added. Secondly, the noise can be random, or pseudo-random, or following
some specific distribution.



2.3 Reduction of Resolution on the Scale of Time

The reduction of resolution operates as the name implies by reducing the accu-
racy of the collected data, for example extending a time attribute from minutes
to hours or even days. There is however a key di↵erence in comparison to ag-
gregation: In case of an aggregation over time, the mean of the values within
a time interval is calculated and generalised over all entries within this inter-
val. Reduction of resolution on the other hand doesn’t change the values, but
instead determines one timestamp within the observed time interval with which
the timestamp of every entry is overwritten. So in contrast to aggregation, the
measured values will be left untouched, yielding perfect accuracy. A conceivable
use case would be reducing the resolution of consumption traces of a smart home
before storing them externally, e↵ectively limiting the amount of sensitive per-
sonal information that may be derived [7]. The interval is again the property
that can be adjusted to suit the application.

3 Comparison Metrics and Evaluation

We compare using four metrics: (a) Feature Extraction, (b) Compression, (c)
Accuracy, and (d) Computational Overhead.

3.1 Feature Extraction as one Metric fro Privacy

We used simple feature extraction algorithm to detect (1) if inhabitants are
present and (2) if a certain device is used.

Presence Detection: The algorithm detecting presence on our energy con-
sumption data set is based on comparing the average consumed energy over
defined time intervals. It starts with a one week training phase over data for
which the inhabitants indicated their presence. Then, it iterates over the whole
data set using the defined interval as step-size. In each step the algorithm checks
if a part of the interval features an average which is greater or equal to the
average determined in the training phase. In case of a hit, we assume having de-
tected presence and mark the interval accordingly. For example, we executed it
with a target of a resolution of four hours, as Fig. 1 this would allow to forecast
consumption at di↵erent time intervals a day, e.g. morning, lunchtime. Fig. 2
only targets to detect the presence on a daily basis.

As the presence within the household is not reasonably detectable by utilising
the data of one circuit only, we applied the algorithm on an accumulated data
set including the consumption of the living and the study room. We performed
the detection over intervals of 4 hours and one day, on both the original data
set, as well as on an accordingly aggregated data set. As the algorithm identified
presence on the original data set almost flawless, we used these results as ref-
erence. Further comparison with the algorithm’s results on the aggregated data
set was based on the receiver operation characteristic notation: if both mark an
interval, this is a true positive (TP), the opposite is a true negative (TN). If



Fig. 1. Presence detection over an interval of 4 hours.

Fig. 2. Presence detection over an interval of 24 hours.

an interval is marked only by the algorithm using the original dataset, this is a
false negative (FN). In case of an interval being marked only by the algorithm
utilising the aggregated data, a false positive (FP) is issued. The accuracy is
then computed as TP+TN

TP+TN+FP+FN

.
Behavioural Detection: We implemented behaviour detection based on

detecting devices being turned on. We utilised device specific power consump-
tion signatures for the purpose of identification, for instance the TV requires
between 40W and 70W while being powered on. We then matched the data with
the signatures to detect occasions where this device is known to be on. From a
privacy point of view, when observed over longer times this allows the derivation
of behaviour patterns, e.g. reveals your favourite TV show. Fig. 3 illustrates the
algorithm, the marked areas allow to easily identify the points in time when
the TV has been switched on. After aggregating the data set, this method is
no longer applicable, since there is no way to di↵erentiate between distinctive
power input anymore. In case of reduction of resolution this is di↵erent however,



since the power consumption as well as the sequence of events is sustained. The
activation of devices can not be mapped to an absolute point in time though.
To measure the privacy gain we compare the number of detected devices before
and after the application of aggregation respectively perturbation. The accuracy
is determined by calculating number of dev detected

after

number of dev detected

before

. The resulting figure de-

scribes the percentage of devices which can still be detected in relation to the
previously detectable devices.

Fig. 3. Identification of SmartTV based on peak of certain height

To ensure the objectivity of our results, we also utilised an external peak
detection algorithm based on Matlab, providing a well-established mathematical
foundation. Thereby, a peak corresponds to a local maxima and has to be greater
than its direct neighbours [3]. Semantically, a peak can be interpreted as some
kind of activity. We applied the algorithm to the raw data set. Afterwards the
same algorithm was executed on the data aggregated over 10 minute intervals
with the harmonic mean. The results are illustrated in figure 4. Since every
peak corresponds to activity, the reduction of 27 peaks to merely 2 indicates
a clear privacy improvement. To estimate the privacy advantage, the formula
number of peaks

after

number of peaks

before

gives the percentage of peaks in relation to the original

number of peaks. Since perturbation introduces random noise, the number of
peaks is increased instead of reduced. Thus peaks

before

are equal to correct
peaks, while peaks

after

include numerous deceptive peaks. Consequently the
quotient has to be turned around in case of perturbation, yielding the ratio of
correct to incorrect peaks.

3.2 Compression Ratio

The amount of transmitted data is an important factor in the IoT. Our compres-
sion metric indicates the percentage by which the aggregation or perturbation
is reducing the original data set and is calculated as 1� number of entries

after

number of entries

before

.
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Fig. 4. Peak detection on original and aggregated data

3.3 Energy Consumption Accuracy

The data set contained timestamped ticks. So we transformed them into a di↵er-
ent representation, by calculating: total

trans
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.
Given the total consumption in kWh, we set the accuracy function to the di↵er-

ence between the original and the processed data: accuracy = 1� |total
after

�total

before

|
total

after

.

3.4 Computational Overhead

Computation time is the average over ten runs on an Intel(R) Xeon(R) CPU
5110 @ 1.60GHz single core system.

4 Evaluation

Comparing di↵erent parameters for aggregation and perturbation we check if
the resulting data still allows deductions. In other words, we check if “data
minimisation” [2] can take place.

Aggregation: We aggregated using the harmonic mean over di↵erent time
intervals ranging from 10 minutes to 1 hours. As Fig. 5 shows, long time intervals
results in far less data. Obviously, it reduces the amount of private information,
but still as the 4h and 24h presence detection shows, it remains usable data, e.g.,
for statistical predictions in the smart grid.

Reduction: As Fig. 6 shows that the dataset with a reduced temporal res-
olution, i.e. 1 minute and 8 hours had no impact on the empirical accuracy.
Although 8 hours are double the interval of presence detection, only a marginal
impact on the presence detection is observed. It remains to be seen if this due
to peculiarities of this household.



Aggregation over Time - Feature Extraction Accuracy (%)

Presence Detection - 4 hours 97,3%
Presence Detection - 24 hours 92,5%
Turning-On of devices - 4 hours 10,4%
Turning-On of devices - 8 hours 5,4%
Peak detection - 10 minutes 7,4%
Peak detection - 1 hour 6,2%
Interval 1 minute 8 hours

Accuracy (%) 99,9% 99,2%
Compression (%) 67,7% 99,7%
Comp. Overhead (s) 3.4 sec 0.8 sec

Fig. 5. Results for aggregation over di↵erent time intervals

Reduction of Resolution: Feature Extraction Accuracy (%)

Presence Detection - 4 hours 74,2%
Presence Detection - 24 hours 78,5%
Turning-On of devices - 4 hours 15,9%
Turning-On of devices - 8 hours 10,8%
Peak detection - 10 minutes 100%
Peak detection - 1 hour 100%
Interval 1 minute 8 hours

Accuracy (%) 100% 99,9%
Compression (%) 0,0% 0,0%
Comp. Overhead (s) 14.3 sec 8.1 sec

Fig. 6. Results for reduction of resolution of time

Perturbation: From the standpoint of privacy protection the notion of dif-
ferential privacy seems to be promising [4]. We just kept it much simpler, know-
ing that we loose on privacy [8]: First, we take the average determined by the
AVG function of MySQL, standard deviation determined by the STD function of
MySQl. Second, we calculate the new value by adding the noise to the previous
value. We utilise a uniform or a gauss distribution, calculated in python as fol-
lows:

new val = old val + rand.uniform(avg2 , (avg + avg
2 ))

new val = old val + rand.gauss(avg, std dev)

Fig. 7 again shows that large and generic detections, even if simplistic, can
hardly be disturbed by noisy data. Which again means, that simple noise is to
be tolerated for some applications and hence “the data collected [..] should be
strictly necessary for the specific purpose previously determined by the data
controller (the 00data minimisation00 principle)” [2]. However, simple noise does
not add to a statistically provable consumer privacy [8].



Perturbation: Feature Extraction Accuracy (%)

Presence Detection - 4 hours 88,1%
Presence Detection - 24 hours 99,5%
Turning-On of devices - Gauss 2,5%
Turning-On of devices - Uniform 1,6%
Peak detection - Gauss 13,8%
Peak detection - Uniform 23%
Distribution: Gaussian Uniform

Accuracy (%) 22,1% 21,2%
Compression (%) 0,0% 0,0%
Comp. Overhead (s) 8.7 sec 8.6 sec

Fig. 7. Results for perturbation

5 Conclusion

This case study gives an overview of the di↵erences in aggregation, resolution
reduction and perturbation of real-life energy consumption data. We gathered
the data from a family household2. Additionally, as we automatically obtained
the uptime of certain IP-enabled appliances, e.g., SmartTV, and because the
inhabitants kept diaries and we conducted interviews, we have a good ground
truth to identify which actions correlate to consumption data. The rising quality
of the gathered data which increases the sensitivity of the recorded data to be
privacy invasive. For this case-study we devised relatively simple threshold driven
machine-learning algorithms to extract features about the behaviour from the
energy consumption data. Even with the compression property of aggregation
or the noise introduced by perturbation the presence detection still works quite
accurately (> 74%). It is worthwhile to note, that although simple presence
detection is still feasible on the processed data set, more detailed inferences
requiring higher temporal or energy-level details are clearly aggravated.

The loss of data quality that is occurring with all methods can always be
seen as a privacy gain, e.g. we showed that presence detection within an interval
of 4 hours is still achievable with far lower data quality. Even more interesting, if
you consider our simple extraction algorithms. As a result we conclude, that for
each IoT application’s well defined purpose — and purpose must be defined to
operate within the EU’s legal boundaries — you must carefully validate if you
could not o↵er the same service with less data.

6 Future Work

As future work, we want to correlate our results with applications of di↵erential
privacy [4]. Secondly we want to follow the idea that if perturbation parameters
are known, you can use them to de-noise perturbed data. The distribution func-
tion along with the respective parameters can be understood as key, while the

2 raw data available on request via ict-rerum.eu



generated noise serves as quasi-encryption. Hence, if you store the parameters
locally, as a sort of a secret, you can store the noisy data at a third party server.
This removes the need to store long histories of data locally. As the data is noisy
it shall be less privacy-invasive, of course it remains to be seen what noise to add.
If there is the need to view values without noise, the locally known perturbation
parameters can be used to de-noise data for authorised local viewers.
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