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Abstract—Redactable signature schemes (RSS) allow remov-
ing blocks from signed data. State-of-the-art schemes have public
redactions, i.e., any party can remove parts from a signed
message. This prohibits meaningful definitions of accountability.
We address this gap by introducing the notion of accountable
redactable signature schemes (ARSS). We present a generic
construction which couples a sanitizable signature scheme (SSS)
to profit from its accountability with an RSS to maintain the
reduced malleability of RSSs. Depending on the building blocks,
the resulting scheme offers transparency or public accountability.
Transparency provides stronger privacy guarantees, while public
accountability meets legal and application requirements.

I. INTRODUCTION

A redactable signature scheme (RSS) allows removing
blocks m[i] from a signed message m = (m[1], . . . ,m[`]).
Hence, a redaction of the block m[i] results in a redacted
message m′ = (m[1], . . . ,m[i − 1],m[i + 1], . . . ,m[`]). The
derived signature σ′ still verifies under the original signer’s
public key. This separates them from standard digital sig-
natures, which prohibit any alteration of signed messages.
Redactions are especially useful if the original signer is not
reachable anymore, e.g., in case of death or if it produces too
much overhead to re-sign a message every time an alteration
is necessary. Applications include privacy-preserving handling
of patient data [5], [6], [35], [37], social networks [30], and
“Blank Signatures” [19], [24]. As an example, identifying in-
formation inside patient records can be redacted: the remaining
information is still enough for an accountant. This protects the
patients’ privacy. However, nobody is able to alter the given
message in an arbitrary way, i.e., only removal of blocks leads
to a valid signature. RSSs thus address the “digital message
sanitization problem” [29]. Real implementations are given
in [17], [32], [35], [37]. Contrary to sanitizable signatures
(SSS) [2], [7], which allow to alter some blocks to arbitrary bit-
strings (but no redaction), accountability of RSSs has not been
fully discussed in the literature; to achieve legal recognition
of RSSs this has to be addressed [11], [18]. In a nutshell,
accountability allows to derive the accountable party of a
signature/message pair (σ,m). This paper shows how to make
RSSs accountable.

1) Example: Assume that patients’ electronic health record
contain prescribed treatments, e.g., the amount of infusions.
For some treatments an apparatus, e.g., a smart pump, reads
details from a record and carries out the treatment. Hence,
health record data must be protected against malicious mod-
ifications, e.g., no wrong dosage. Assume further that the
hospital offers standard vaccination, but also treats patients
with severe diseases, e.g., multistage measles, avian influenza
or even ebola. Thus, patients want to selectively show treat-
ments to other institutions, e.g., to their employer only the

recent treatment for vaccination, even if they have had other
treatments. The doctor signs treatments along with patient’s
name and an internal identifier for him. The signed message
is stored on a hospital’s server and used by medical apparatus.
Information about treatments is given to other medical staff,
accountants, and each patient. Assume finally, that patients use
signed hospital treatments to get reimbursed by the insurance.

RSSs allow to hand over only selected but integrity pro-
tected information. For example, a hospital server redacts
patients’ names before giving the records to the hospital’s
accountant [37], patients retrieve their own health record and
redact it themselves before giving it to their employer. How-
ever, standard RSSs allow redactions by anyone, including the
accountant, without detecting who redacted what. For example,
the accountant teaming up with the patient redacts treatments
to charge less to the patient’s health insurance. This situation
is clearly not acceptable. In fact, many electronic solutions for
real-world applications explicitly deploy electronic signatures
to generate legal evidence against the accountable party.

2) Motivation and Contribution: As aforementioned, ac-
countability, i.e., it can be derived which party is accountable
for a given signature/message pair (σ,m), has only been
defined for SSSs [7] yet. We present a publicly accountable
RSS and a transparent RSS. The former allows to reproducibly
derive the accountable party without knowing any secrets and
without any additional protocol interaction. Public account-
ability was shown by Brzuska et al. and Höhne et al. to be
required to reach a level of legal evidence equal to standard
digital signatures [11], [25]. This legal status is of paramount
importance to actually deploy RSSs in real applications. Trans-
parency, i.e., the anonymity of the accountable party, contra-
dicts some requirements from the legal side [11]. However,
transparency offers additional privacy guarantees which are
required if the existence of a redaction must be hidden, e.g.,
if discrimination may follow [11]. We formalize both types
of accountability to cover both use-cases. Our contribution
is therefore manifold: (1) We present a formal framework
for accountable RSSs. (2) We formally define the security
definitions of accountable RSSs. (3) Our security notions are
“compatible” with existing ones, i.e., they can be related to
prior definitions. (4) We introduce a new generic construction.
Depending on the properties of the underlying building blocks,
it achieves public accountability or transparency. (5) We prove
our construction tightly secure, i.e., the reduction loss is
constant. (6) The construction, shown in Sect. IV, relies on
standard building blocks and can easily be extended to multi-
sanitizer environments [14]. (7) Our construction exclusively
covers messages represented as lists of blocks. However, our
proofs do not depend on this structure, thus we are confident
that our ideas can be extended easily to more complex data-



structures.

3) State-of-the-Art: On the one hand, RSSs have been
introduced in [26] and, in a different notion, in [36]. Based on
these first ideas, additional work appeared. Some cover more
complex data-structures like trees [8], [33], and graphs [28].
The standard security properties of RSSs have been formalized
in [8], [16], [31], [33]. Recently, Ahn et al. introduced the
notion of statistically unlinkable RSSs [1]. Even stronger
privacy notions have lately been discussed in [3], [4]. The latter
schemes only allow for quoting instead of arbitrary redactions,
i.e., redactions are only allowed at the beginning and at the end
of a message. Moreover, the scheme by Ahn et al. only achieves
the less common notion of selective unforgeability [1]. There
exists many additional work on RSSs. However, most of the
schemes presented are not private, e.g., [23], [28], following
the privacy notion formalized by Brzuska et al. [8]. In those
schemes, a verifier can deduce statements about the original
message m, which contradicts the intention of RSSs [8], [32].
Our construction achieves full unforgeability and an advanced
definition of privacy, namely unlinkability. Existing work on
RSSs does not treat accountability in a formal sense, but notes
that this a desirable property, e.g., [18], [33]. [33] introduces a
first idea, but lacks formal proofs and complete security model.
This paper addresses these shortcomings.

On the other hand, SSSs have been introduced by Ateniese
et al. [2]. They allow a semi-trusted third party, named the san-
itizer, to change admissible blocks of a signed message to ar-
bitrary bitstrings. The basic security properties have then been
formalized by Brzuska et al. [7]. These have been extended for
unlinkability [10], [12], [20] and public accountability [11],
[12]. The concept of grouping blocks has recently been in-
troduced in [17]. Extensions like limiting-to-values [13], [27],
trapdoor-SSSs [15] and multi-sanitizer environments [9], [14]
have also been considered. Our definitions only cover single
sanitizer environments; how to extend our schemes to multi-
sanitizer environments is discussed in Sect. IV.

There exists much additional related work, e.g., zero-
knowledge structure queries [21], [22]. The same references
provide a good overview of additional related work.

II. PRELIMINARIES AND BUILDING BLOCKS

For our construction, we require RSSs and SSSs. We
therefore completely define each of them to be self-contained.

λ ∈ N denotes the security parameter. All algorithms
implicitly take 1λ as their first input. For a message m =
(m[1], . . . ,m[`]), where m[i] ∈ {0, 1}∗, we call m[i] a block,
while ` ∈ N denotes the number of blocks in a message
m. P(S) denotes the power set of S. We call an algorithm
efficient, if it runs in probabilistic polynomial time (PPT ) in
λ. All algorithms may return an exception ⊥ /∈ {0, 1}∗.

A. Redactable Signature Schemes

The following definitions for RSSs are compiled from [8],
[34]. We do not consider dynamic updates or merging [31], as
we also want to achieve unlinkability.

Definition 1 (Redactable Signature Scheme (RSS)): An
RSS consists of four efficient algorithms. Let RSS := (KGsig,
Sign,Redact,Verify), such that:

1) Key Generation: The signer generates a key pair,
based on the security parameter λ:

(pksig, sksig)← KGsig(1
λ)

2) Signing: The Sign algorithm takes as input a message
m and sksig. It outputs a signature σ:

σ ← Sign(m, sksig)

3) Redacting: Algorithm Redact takes a message m,
MOD, a signature σ, and pksig. It modifies the message
m according to the modification instruction MOD ∈
P({1, 2, . . . , `}). MOD contains the indices for those
blocks that shall be redacted. m′ ← MOD(m) means
that m is modified according to MOD. Redact outputs
m′ ← MOD(m) and σ′:

(m′, σ′)← Redact(m,MOD, σ, pksig)

4) Verification: Algorithm Verify outputs a decision d ∈
{1, 0} verifying the correctness of a signature σ for
a message m w.r.t. a public key pksig:

d← Verify(m,σ, pksig)

We require the usual correctness properties to hold. The
security definitions can be found in App. A; our definition of
unlinkability is also new, but is achieved by every RSS which
is completely context hiding and the adversary is allowed to
generate the key pair [3].

B. Sanitizable Signature Schemes

The definitions for SSSs are compiled from [7], [11], [12].

Definition 2 (Sanitizable Signature Scheme): A SSS con-
sists of seven efficient algorithms. Let SSS := (KGsig,KGsan,
Sign,Sanit,Verify,Proof, Judge), such that:

1) Key Generation: There is one key generation algo-
rithm for the signer and one for the sanitizer. Both
create a key pair; a private key and the corresponding
public key, w.r.t. the security parameter λ:

(pksig, sksig)← KGsig(1
λ), (pksan, sksan)← KGsan(1

λ)

2) Signing: The Sign algorithm takes as input a message
m, sksig, pksan, as well as a description ADM of
the admissibly modifiable blocks. ADM contains the
indices of the modifiable blocks, as well as the
number ` of blocks in m. It outputs a signature σ:

σ ← Sign(m, sksig, pksan, ADM)

3) Sanitizing: Algorithm Sanit takes a message m,
modification instruction MOD, a signature σ, pksig,
and sksan. It modifies the message m according to
the modification instruction MOD, which is a set
containing pairs (i,m[i]′) for those blocks that shall
be modified, meaning that m[i] is replaced with m[i]′.
Sanit calculates a new signature σ′ for the modified
message m′ ← MOD(m). Then, Sanit outputs m′
and σ′:

(m′, σ′)← Sanit(m,MOD, σ, pksig, sksan)



4) Verification: The Verify algorithm outputs a decision
d ∈ {1, 0} verifying the correctness of a signature σ
for a message m w.r.t. the public keys pksig and pksan:

d← Verify(m,σ, pksig, pksan)

5) Proof: The Proof algorithm takes as input sksig, a
message m = (m[1], . . . ,m[`]), m[i] ∈ {0, 1}∗ and
a signature σ and a set of (polynomially many) addi-
tional message/signature pairs {(mi, σi)} and pksan.
It outputs a string π ∈ {0, 1}∗:

π ← Proof(sksig,m, σ, {(mi, σi) | i ∈ N}, pksan)

6) Judge: Algorithm Judge takes as input a message
m, a signature σ, both public keys and a proof π.
It outputs a decision d ∈ {Sig,San} indicating
whether the message/signature pair has been created
by the signer or a sanitizer:

d← Judge(m,σ, pksig, pksan, π)

As before, we require that all correctness properties hold.

III. ACCOUNTABLE REDACTABLE SIGNATURES SCHEMES

Accountable redactable signatures (ARSS) allow to derive
the accountable party of a given signature/message pair (σ,m).
Our security definitions are based on the ones given for SSSs
to ease understanding of our goals. We define two different
characteristics of accountability: an online form, where the
original signer has to generate a proof, and an offline version
where anyone is able to derive the accountable party (called
publicly accountable). Also, our definition covers a single
sanitizer only; an extension to multiple ones is beyond the
scope of this paper, but we briefly discuss this possibility in
Sect. IV.

Definition 3 (Accountable RSS (ARSS)): An ARSS con-
sists of seven efficient algorithms. As ARSSs are an extension
of RSSs, we need additional algorithms, while existing ones
are altered. In particular, let ARSS := (KGsig,KGsan,Sign,
Redact,Verify,Proof, Judge), such that:

1) Key Generation: There are two key generation algo-
rithms, one for the signer and one for the sanitizer.
Both create a pair of keys, a private and the corre-
sponding public key, w.r.t. the security parameter λ:

(pksig, sksig)← KGsig(1
λ), (pksan, sksan)← KGsan(1

λ)

2) Signing: The Sign algorithm takes as input a message
m, sksig, and pksan. It outputs a signature σ:

σ ← Sign(m, sksig, pksan)

3) Redacting: Algorithm Redact takes a message m,
MOD, a signature σ, pksig, and sksan. mod is defined
as for RSSs. Then, Redact outputs m′ and σ′:

(m′, σ′)← Redact(m,MOD, σ, pksig, sksan)

4) Verification: The Verify algorithm outputs a decision
d ∈ {1, 0} verifying the correctness of a signature σ
for a message m w.r.t. the public keys pksig and pksan:

d← Verify(m,σ, pksig, pksan)

Experiment UnforgeabilityARSSA (λ)
(pksig, sksig)← KGsig(1

λ)

(pksan, sksan)← KGsan(1
λ)

(m∗, σ∗)← ASign(·,sksig,·),Redact(·,·,·,·,sksan),Proof(sksig,·,·,·,·)(pksig, pksan)
for i = 1, 2, . . . , q let (mi, pksan,i) and σi
index the queries/answers to/from Sign
for j = 1, 2, . . . , q′ let (mj , σj , pksig,j ,MODi) and (m′j , σ

′
j)

index the queries/answers to/from Redact
return 1, if

Verify(m∗, σ∗, pksig, pksan) = 1 and
∀i ∈ {1, 2, . . . , q} : (pksan,m

∗) 6= (pksan,i,mi) and
∀j ∈ {1, 2, . . . , q′} : (pksig,m

∗) 6= (pksig,j ,m
′
j)

Fig. 1. ARSS Unforgeability

5) Proof: The Proof algorithm takes as input sksig, a
message m and a signature σ as well a set of (poly-
nomially many) additional message/signature pairs
{(mi, σi)} and pksan. It outputs a string π ∈ {0, 1}∗:

π ← Proof(sksig,m, σ, {(mi, σi) | i ∈ N}, pksan)

6) Judge: Algorithm Judge takes as input a message
m, a signature σ, the public keys of both parties and
a proof π. It outputs a decision d ∈ {Sig,San}
indicating whether the message/signature pair has
been created by the signer or the sanitizer:

d← Judge(m,σ, pksig, pksan, π)

Again, we require all correctness requirements to hold. As
for SSSs [11], in a publicly accountable ARSS, we require
that Judge outputs the accountable party with an empty proof
(π = ⊥).

A. Security Model ARSS

For ARSSs we require that a public key can efficiently be
derived from its corresponding secret key. Let us explicitly
stress that our definitions are similar to the ones for RSSs and
SSSs; they blend in easily with the large body of existing work.

1) Unforgeability: The most basic requirement is unforge-
ability: no one should be able to generate valid signatures on
new messages not issued before without having access to the
private signing keys. This is captured within the next definition.

Definition 4 (ARSS Unforgeability): An ARSS is unforge-
able, if for any efficient adversary A the probability that the
game depicted in Fig. 1 returns 1, is negligible (as a function
of λ). This is similar to standard signatures.

2) Sanitizer-Unforgeability: A sanitizer should not be
able to alter a given message in a malicious way. In par-
ticular, a sanitizer must only redact, not append or alter
a block or “exchange” the public key. span�(m) denotes
the set which contains all messages derivable from m =
(m[1],m[2], . . . ,m[`]) exclusively using redactions. More for-
mally, let I denote the index set of P({1, 2, . . . , `}); let
span�(m) :=

⋃
i∈I MODi(m), where MODi corresponds to the

ith element in P({1, 2, . . . , `}). The definition is as follows.

Definition 5 (ARSS Sanitizer Unforgeability): An ARSS
is sanitizer unforgeable, if for any efficient adversary A the
probability that the game depicted in Fig. 2 returns 1, is
negligible (as a function of λ).



Experiment Sanitizer-UnforgeabilityARSSA (λ)
(pksig, sksig)← KGsig(1

λ)

(m∗, σ∗, pk∗)← ASign(·,sksig,·),Proof(sksig,·,·,·,·)(pksig)
for i = 1, 2, . . . , q let (mi, pksan,i) index the queries to Sign.

return 1, if
Q ←

⋃
(mi,pk∗) was queried to Sign span�(mi)

Verify(m∗, σ∗, pksig, pk∗) = 1 and
m∗ /∈ Q

Fig. 2. ARSS Sanitizer-Unforgeability

Experiment PrivacyARSSA (λ)
(pksig, sksig)← KGsig(1

λ)

(pksan, pksan)← KGsan(1
λ)

b← {0, 1}
a← ASign(·,sksig,·),Redact(·,·,·,·,sksan),Proof(sksig,·,·,·,·)

LoRRedact(·,·,·,·,sksig,sksan,b)
(pksig, pksan)

where oracle LoRRedact on input of m0,MOD0,m1,MOD1:
if MOD0(m0) 6= MOD1(m1), return ⊥
let σ ← Sign(mb, sksig, pksan)
return (m′, σ′)← Redact(mb,MODb, σ, pksig, sksan)

return 1, if a = b

Fig. 3. ARSS Privacy

3) Privacy: A third party should not be able to derive any
knowledge about redacted elements. This is covered within the
next definition similar to the definitions for RSSs and SSSs.

Definition 6 (ARSS Privacy): An ARSS is private, if for
any efficient adversary A the probability that the experiment
given in Fig. 3 returns 1 is negligibly close to 1

2 (as a function
of λ).

4) Transparency: An even stronger privacy definition is
transparency. It prohibits finding the accountable party of given
signature without knowing the signer’s secret key, i.e., whether
a signature was created by Sign or Redact. Note, access to
the proof-oracle is limited.

Definition 7 (ARSS Transparency): An ARSS is proof-
restricted transparent, if for any efficient adversary A the
probability that the experiment given in Fig. 4 returns 1 is
negligibly close to 1

2 (as a function ofλ).

5) Unlinkability: In a nutshell, the adversary can input
two signatures/message pairs. The LoRRedact-oracle chooses
one of the two signatures to generate a new one. Here, the
adversary has to guess which of the two inputted message-
signature pairs was chosen to be sanitized. Note, compared
to the privacy definition, also the signatures are input by the
adversary, not internally generated. That is also the reason why
we let the adversary specify each pksig, following [12], which
formalized strong unlinkability for SSSs.

Definition 8 (ARSS Unlinkability): An ARSS is unlink-
able, if for any efficient adversary A the probability that the
experiment given in Fig. 5 returns 1 is negligibly close to 1

2
(as a function of λ).

6) Signer Accountability: In the following definition, the
adversary has to generate a proof π∗ which makes Judge to
decide that the sanitizer is accountable, if it is not.

Definition 9 (ARSS Signer Accountability): An ARSS is
signer accountable, if for any efficient adversary A the proba-

Experiment TransparencyARSSA (λ)
(pksig, sksig)← KGsig(1

λ)

(pksan, sksan)← KGsan(1
λ)

b← {0, 1}
a← ASign(·,sksig,·),Redact(·,·,·,·,sksan),Proof(sksig,·,·,·,·)

Redact/Sign(·,·,sksig,sksan,b)
(pksig, pksan)

where oracle Redact/Sign for input m,MOD
σ ← Sign(m, sksig, pksan)
(m′, σ′)← Redact(m,MOD, σ, pksig, sksan)
if b = 1: σ′ ← Sign(m′, sksig, pksan)
return (m′, σ′)

if A has queried any message output by Redact/Sign to Proof,
return a random bit. Else, return 1, if a = b

Fig. 4. ARSS Transparency

Experiment UnlinkabilityARSSA (λ)
(pksan, sksan)← KGsan(1

λ)
b← {0, 1}
a← ARedact(·,·,·,·,sksan),LoRRedact(·,·,·,·,·,·,·,sksan,b)(pksan)

where oracle LoRRedact on input of:
m0,MOD0, σ0,m1,MOD1, σ1, pksig
if MOD0(m0) 6= MOD1(m1), return ⊥
if Verify(m0, σ0, pksig, pksan) 6= Verify(m1, σ1, pksig, pksan), return ⊥
return (m′, σ′)← Redact(mb,MODb, σb, pksig, sksan)

return 1, if a = b

Fig. 5. ARSS Unlinkability

bility that the experiment given in Fig. 6 returns 1 is negligible
(as a function of λ).

7) Sanitizer Accountability: In the following game, the
adversary has to generate a message/signature (m∗, σ∗) which
makes Proof generate a proof π, leading the Judge to decide
that the signer is accountable, while it is not.

Definition 10 (ARSS Sanitizer Accountability): A
redactable signature scheme ARSS is sanitizer accountable,
if for any efficient adversary A the probability that the
experiment given in Fig. 7 returns 1 is negligible (as a
function of λ).

8) Public Accountability: The basic idea for defining pub-
lic accountability is that an adversary, i.e., the sanitizer or the
signer, has to be able to make the Judge decide wrongly on an
empty proof π. This captures the idea that public accountability
allows an outsider to derive the accountable party on its own:
it is public as running Proof is not necessary, and Judge does
not require any secret material.

Definition 11 (ARSS Public Accountability): A redactable
signature scheme ARSS is publicly accountable, if Proof = ⊥,
and, if for any efficient adversary A the probability that the
experiment given in Fig. 8 returns 1 is negligible (as a function
of λ).

We call an ARSS secure, if it is correct, unlinkable, un-
forgeable, sanitizer-unforgeable, private, sanitizer-accountable
and signer-accountable.

We do not consider transparency or public accountability as
integral security requirements as they are mutually exclusive.
Additionally, it depends on the use case which security notion
is required.



Experiment Sig-AccountabilityARSSA (λ)
(pksan, sksan)← KGsan(1

λ)
b← {0, 1}
(pk∗, π∗,m∗, σ∗)← ARedact(·,·,·,·,sksan)(pksan)

let (m′i, σ
′
i) for i = 1, . . . , q

denote the answers from oracle Redact
return 1, if

Verify(m∗, σ∗, pk∗, pksan) = 1 and
∀i ∈ {1, 2, . . . , q} : (pk∗,m∗) 6= (pksig,i,m

′
i) and

Judge(m∗, σ∗, pk∗, pksan, π
∗) = San

Fig. 6. ARSS Signer Accountability

Experiment San-AccountabilityARSSA (λ)
(pksig, sksig)← KGsig(1

λ)
b← {0, 1}
(pk∗,m∗, σ∗)← ASign(·,sksig,·),Proof(sksig,·,·,·,·)(pksig)

let (mi, pksan,i) and σi for i = 1, . . . , q
denote the queries and answers to/from oracle Sign

π ← Proof(sksig,m
∗, σ∗, {(mi, σi) | 0 < i ≤ q}, pk∗)

return 1, if
Verify(m∗, σ∗, pksig, pk∗) = 1 and
∀i ∈ {1, 2, . . . , q} : (pk∗,m∗) 6= (pksan,i,mi) and
Judge(m∗, σ∗, pksig, pk∗, π) = Sig

Fig. 7. ARSS Sanitizer Accountability

IV. CONSTRUCTION

In this section, we introduce the constructions for ARSSs.
The basic idea is to use an SSS which makes any RSS account-
able by signing the original message m and the corresponding
redactable signature σRSS of that m using the SSS. While m
and σRSS can be changed publicly by redaction using the RSS,
the outer SSS signature can only be updated by dedicated
and accountable sanitizers using the SSS. The construction is
surprisingly simple; depending on the security properties of
the underlying SSS, the resulting ARSS is either transparent
or public accountable.

Construction 1 (ARSS): Provided secure RSS and SSS we
define the accountable redactable signature ARSS = (KGsig,
KGsan,Sign,Redact,Verify,Proof, Judge) as follows:

1) Key Generation: KGsig generates on input of the se-
curity parameter λ a key pair. It consists of a key pair
for an RSS: (pkRSSsig , skRSSsig )← RSS.KGsig(1

λ) and for
an SSS: (pkSSSsig , skSSSsig ) ← SSS.KGsig(1

λ). It returns
((pkSSSsig , pkRSSsig ), (skSSSsig , skRSSsig )). Analogously, KGsan

returns a pair (pkSSSsan , skSSSsan )← SSS.KGsan(1
λ).

2) Signing: Sign, on input m, sksig, and pksan
computes σRSS ← RSS.Sign(m, skRSSsig ). It
lets σSSS ← SSS.Sign((m,σRSS, pkRSSsig , pkSSSsig ,

pkSSSsan ), skSSSsig , pkSSSsan , ADM), where ADM = ({1, 2},
5). It returns σ = (σRSS, σSSS).

3) Redacting: Redact, on input of message m, mod-
ification instructions MOD, a signature σ = (σRSS,
σSSS), checks if σ is valid using Verify. If not,
it returns ⊥. If all checks pass, it generates (m′,
σ′RSS) ← RSS.Redact(m,MOD, σRSS, pkRSSsig ) and
(m′′, σ′SSS) ← SSS.Sanit((m,σRSS, pkRSSsig , pkSSSsig ,

pkSSSsan ), {(1,m′), (2, σ′RSS)}, σSSS, pkSSSsig , skSSSsan ). It fi-
nally returns (m′, (σ′RSS, σ

′
SSS)).

4) Verification: Algorithm Verify on input of a
message m a signature σ = (σRSS, σSSS) and
public keys pksig and pksan, first checks if σRSS is

Experiment PubaccountabilityARSSA (λ)
(pksig, sksig)← KGsig(1

λ)

(pksan, sksan)← KGsan(1
λ)

(pk∗,m∗, σ∗)← ASign(·,sksig,·,·),Redact(·,·,·,·,sksan)(pksig, pksan)
Let (mi, ADMi, pksan,i) and σi for i = 1, 2, . . . , q
be the queries and answers to and from oracle Sign
return 1 if

Verify(m∗, σ∗, pksig, pk∗) = 1, and
∀i ∈ {1, 2, . . . , q} : (pk∗,m∗) 6= (pksan,i,mi) and
Judge(m∗, σ∗, pksig, pk∗,⊥) = Sig

Let (mj ,MODj , σj , pksig,j) and (m′j , σ
′
j) for j = 1, 2, . . . , q′

be the queries and answers to and from oracle Redact
return 1 if

Verify(m∗, σ∗, pk∗, pksan) = 1 and
∀j ∈ {1, 2, . . . , q′} : (pk∗,m∗) 6= (pksig,j ,m

′
j) and

Judge(m∗, σ∗, pk∗, pksan,⊥) = San

Fig. 8. ARSS Public Accountability

a valid signature using RSS.Verify(m,σRSS, pkRSSsig ).
It then checks whether σSSS is valid running
SSS.Verify((m,σRSS, pkRSSsig , pkSSSsig , pkSSSsan ), σSSS, pkSSSsig ,

pkSSSsan ). If all checks are valid, return 1. Otherwise it
returns 0.

5) Proof: Proof on input of σ = (σRSS, σSSS), m,
pksan, sksig, and {mi, (σRSS,i, σSSS,i) | i ∈ N},
it first checks whether σ is valid. If
not, it returns ⊥. Else, it returns π ←
SSS.Proof(skSSSsig , (m,σRSS, pkRSSsig , pkSSSsig , pkSSSsan ), σSSS,

{((mi, σRSS,i, pkRSSsig , pkSSSsig , pkSSSsan ), σSSS,i) | i ∈ N},
pkSSSsan ).

6) Judge: Judge on input of m,σ = (σRSS, σSSS),
pksig, pksan and π first checks whether σ is
valid. If not, it outputs ⊥. Else, it outputs
SSS.Judge((m,σRSS, pkRSSsig , pkSSSsig , pkSSSsan ), σSSS,

pkSSSsig , pkSSSsan , π).

A. Correctness and Security of the Construction

The correctness can be derived by inspection.

Theorem 1 (Security of ARSS): If SSS is a secure sani-
tizable signature scheme, while RSS is a secure redactable
signature scheme, the resulting ARSS is a secure accountable
redactable signature scheme.

The proof can be found in App. C.

B. Multiple Sanitizers and More Complex Structures

To extend our construction to support multiple sanitiz-
ers [14], one uses an SSS which supports multiple sanitizers.
Of course, the security model has to be adjusted accordingly.

As aforementioned, there are RSSs for more complex data-
structures like trees and graphs. In our proofs, we do not use
the list structure; we are therefore confident that our general
construction carries over to different data-structures if the
underlying RSS supports it. Of course, the algorithms and
security definitions have to be adjusted accordingly. However,
due to the generality of our construction this is only a diligent
but routine piece of work.



V. CONCLUSION AND FUTURE WORK

We have introduced the notion of accountable redactable
signatures. We defined two types of accountability: (1) trans-
parency meets stronger privacy guarantees, while (2) public
accountable allows meeting current legal requirements [11],
[25]. We derived a new construction combining any secure
RSS with any secure SSS. It can be easily instantiated needing
no additional building blocks. We leave it as future work to
show the relations between the different security properties of
ARSS and to derive a direct construction, mainly for efficiency.
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APPENDIX

A. RSS Security Model

1) Unforgeability: No one should be able to generate valid
signatures on messages not endorsed by the signer without
having access to sksig. Not endorsed excludes valid redactions
from forgeries. This is captured within the following definition.



Experiment PrivacyRSSA (λ)
(pksig, sksig)← KGsig(1

λ)
b← {0, 1}
a← ASign(·,sksig),LoRRedact(·,·,·,·,sksig,b)(pksig)

where oracle LoRRedact on input of m0,MOD0,m1,MOD1:
if MOD0(m0) 6= MOD1(m1), return ⊥
let σ ← Sign(mb, sksig)
return (m′, σ′)← Redact(mb,MODb, σ, pksig)

return 1, if a = b

Fig. 10. RSS Privacy

Experiment TransparencyRSSA (λ)
(pksig, sksig)← KGsig(1

λ)
b← {0, 1}
a← ASign(·,sksig),Redact/Sign(·,·,sksig,b)(pksig)

where oracle Redact/Sign for input m,MOD:
σ ← Sign(m, sksig)
(m′, σ′)← Redact(m,MOD, σ, pksig)
if b = 1: σ′ ← Sign(m′, sksig)
return (m′, σ′)

return 1, if a = b

Fig. 11. RSS Transparency

Definition 12 (RSS Unforgeability): An RSS is unforge-
able, if for any efficient adversary A the probability that
the experiment depicted in Fig. 9 returns 1, is negligible
(as a function of λ). This is similar to the definitions of
unforgeability of standard signatures.

2) Privacy: A third party should not be able to derive any
knowledge about redacted elements. This is covered within
the privacy definition. Essentially, the adversary has to decide
whether the first or second message of it supplied was redacted
by the LoRRedact to yield the presented redacted message.

Definition 13 (RSS Privacy): An RSS is private, if for any
efficient adversary A the probability that the experiment given
in Fig. 10 returns 1 is negligibly close to 1

2 (as a function of
λ).

3) Transparency: Transparency gives even stronger privacy
guarantees. It prohibits deciding whether a signature was
generated using Redact or Sign. Here, the adversary also
chooses the message m to be signed and the target message.

Definition 14 (RSS Transparency): An RSS is transparent,
if for any efficient adversary A the probability that the exper-
iment given in Fig. 11 returns 1 is negligibly close to 1

2 (as a
function of λ).

4) Unlinkability: Another strong privacy notion is unlink-
ability. It prohibits deciding whether a signature was derived
from another known one.

Definition 15 (RSS Unlinkability): An RSS is unlinkable,
if for any efficient adversary A the probability that the exper-
iment given in Fig. 12 returns 1 is negligibly close to 1

2 (as a
function of λ).

B. SSS Security Model

1) Unforgeability: As before for RSSs, no one should be
able to generate valid signatures on new messages not queried

Experiment UnlinkabilityRSSA (λ)
b← {0, 1}
a← ALoRRedact(·,·,·,·,·,·,·,b)()

where oracle LoRRedact on input of:
m0,MOD0, σ0,m1,MOD1, σ1, pksig
if MOD0(m0) 6= MOD1(m1), return ⊥
if Verify(m0, σ0, pksig) 6= Verify(m1, σ1, pksig), return ⊥
return (m′, σ′)← Redact(mb,MODb, σb, pksig)

return 1, if a = b

Fig. 12. RSS Unlinkability

Experiment UnforgeabilitySSSA (λ)
(pksig, sksig)← KGsig(1

λ)

(pksan, sksan)← KGsan(1
λ)

(m∗, σ∗)← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan),Proof(sksig,·,·,·,·)(pksig, pksan)
for i = 1, 2, . . . , q let (mi, pksan,i, ADMi) and σi
index the queries/answers to/from Sign
for j = 1, 2, . . . , q′ let (mj , σj , pksig,j ,MODj) and (m′j , σ

′
j)

index the queries/answers to/from Sanit
return 1, if

Verify(m∗, σ∗, pksig, pksan) = 1 and
∀i ∈ {1, 2, . . . , q} : (pksan,m

∗) 6= (pksan,i,mi) and
∀j ∈ {1, 2, . . . , q′} : (pksig,m

∗) 6= (pksig,j ,m
′
j)

Fig. 13. SSS Unforgeability

before without having access to any private keys. However,
compared to RSSs, we need to also consider the sanitizer.

Definition 16 (SSS Unforgeability): An SSS is unforge-
able, if for any efficient adversary A the probability that
the experiment depicted in Fig. 13 returns 1, is negligi-
ble (as a function ofλ).

2) Immutability: A sanitizer must not be able to alter a
given message in a malicious way. In particular, it must only
be able to alter admissible blocks. Hence, also deleting or
appending blocks must be prohibited. ADM(MOD) = 1 means
that MOD only contains modifications which are admissible.

Definition 17 (SSS Immutability): An SSS is immutable,
if for any efficient adversary A the probability that the experi-
ment depicted in Fig. 14 returns 1, is negligible (as a function
of λ).

3) Privacy: Privacy for SSSs is very related to the one of
RSSs. In a nutshell, an adversary must not be able to derive
knowledge about sanitized parts when it does not have access
to them.

Definition 18 (SSS Privacy): An SSS is private, if for any
efficient adversary A the probability that the experiment given
in Fig. 15 returns 1 is negligibly close to 1

2 (as a function of
λ). Here, the adversary has to decide which message was used
to produce the desired outcome.

4) Unlinkability: In our unlinkability definition, the ad-
versary has to decide which signature was used. This is the
stronger notion from [12].

Definition 19 (SSS Unlinkability): An SSS is unlinkable,
if for any efficient adversary A the probability that the exper-
iment given in Fig. 16 returns 1 is negligibly close to 1

2 (as a
function of λ). Here, the adversary has to guess which of the
two message-signature pairs, supplied by the adversary, was
chosen by the oracle LoRSanit to be sanitized.



Experiment ImmutabilitySSSA (λ)
(pksig, sksig)← KGsig(1

λ)

(m∗, σ∗, pk∗)← ASign(·,sksig,·,·),Proof(sksig,·,·,·,·)(pksig)
for i = 1, 2, . . . , q let (mi, pksan,i, ADMi) index the queries to oracle Sign

return 1, if
Verify(m∗, σ∗, pksig, pk∗) = 1, and
∀i ∈ {1, 2, . . . , q} : pk∗ 6= pksan,i or m∗ /∈ {MOD(mi) | MOD with ADMi(MOD) = 1}

Fig. 14. SSS Immutability

Experiment PrivacySSSA (λ)
(pksig, sksig)← KGsig(1

λ)

(pksan, pksan)← KGsan(1
λ)

b← {0, 1}
a← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan),Proof(sksig,·,·,·,·)

LoRSanit(·,·,·,·,·,sksig,sksan,b)
(pksig, pksan)

where oracle LoRSanit on input of:
m0,MOD0,m1,MOD1, ADM
if MOD0(m0) 6= MOD1(m1), return ⊥
let σ ← Sign(mb, sksig, pksan, ADM)
return (m′, σ′)← Sanit(mb,MODb, σ, pksig, sksan)

return 1, if a = b

Fig. 15. SSS Privacy

Experiment UnlinkabilitySSSA (λ)
(pksan, sksan)← KGsan(1

λ)
b← {0, 1}
a← ASanit(·,·,·,·,sksan),LoRSanit(·,·,·,·,·,·,·,sksan,b)(pksan)

where oracle LoRSanit on input of:
m0,MOD0, σ0,m1,MOD1, σ1, pksig
if ADM0 6= ADM1, or MOD0(m0) 6= MOD1(m1), return ⊥
if Verify(m0, σ0, pksig, pksan) 6= Verify(m1, σ1, pksig, pksan), return ⊥
return (m′, σ′)← Sanit(mb,MODb, σb, pksig, sksan)

return 1, if a = b

Fig. 16. SSS Unlinkability

Experiment TransparencySSSA (λ)
(pksig, sksig)← KGsig(1

λ)

(pksan, sksan)← KGsan(1
λ)

b← {0, 1}
a← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan),Proof(sksig,·,·,·,·)

Sanit/Sign(·,·,·,sksig,sksan,b)
(pksig, pksan)

where oracle Sanit/Sign for input m,MOD, ADM:
σ ← Sign(m, sksig, pksan, ADM)
(m′, σ′)← Sanit(m,MOD, σ, pksig, sksan)
if b = 1: σ′ ← Sign(m′, sksig, pksan, ADM)
return (m′, σ′)

if A has queried any message output by Sanit/Sign to Proof,
return a random bit. Else, return 1, if a = b

Fig. 17. SSS Transparency

5) Transparency: As for RSSs, transparency for SSS pro-
hibits an adversary from deciding whether a signature orig-
inated from Sign or from Sanit. Note, access to the proof-
oracle is limited.

Definition 20 (SSS Transparency): An SSS is proof-
restricted transparent, if for any efficient adversary A the
probability that the experiment given in Fig. 17 returns 1 is
negligibly close to 1

2 (as a function of λ).

The basic idea is that the adversary is not able to decide
whether it sees a fresh signature or one created by Sanit. Note,
the access to the proof oracle is also limited.

6) Signer Accountability: For accountability, a signer
should not be able to blame a sanitizer if the sanitizer is
actually not responsible for a given message. In this game,
the adversary has to generate a proof π∗ which makes Judge

Experiment Sig-AccountabilitySSSA (λ)
(pksan, sksan)← KGsan(1

λ)
b← {0, 1}
(pk∗, π∗,m∗, σ∗)← ASanit(·,·,·,·,sksan)(pksan)

for i = 1, . . . , q let (m′i, σ
′
i) and (mi,MODi, σi, pksig,i)

index the answers/queries from/to the oracle Sanit
return 1, if

Verify(m∗, σ∗, pk∗, pksan) = 1, and
∀i ∈ {1, 2, . . . , q} : (pk∗,m∗) 6= (pksig,i,m

′
i) and

Judge(m∗, σ∗, pk∗, pksan, π
∗) = San

Fig. 18. SSS Signer Accountability

Experiment San-AccountabilitySSSA (λ)
(pksig, sksig)← KGsig(1

λ)
b← {0, 1}
(pk∗,m∗, σ∗)← ASign(·,sksig,·,·),Proof(sksig,·,·,·,·)(pksig)

let (mi, ADMi, pksan,i) and σi for i = 1, . . . , q
denote the queries/answers to/from oracle Sign

π ← Proof(sksig,m
∗, σ∗, {(mi, σi) | 0 < i ≤ q}, pk∗)

return 1, if
Verify(m∗, σ∗, pksig, pk∗) = 1, and
∀i ∈ {1, 2, . . . , q} : (pk∗,m∗) 6= (pksan,i,mi) and
Judge(m∗, σ∗, pksig, pk∗, π) = Sig

Fig. 19. SSS Sanitizer Accountability

to decide that the sanitizer is accountable, if it is not.

Definition 21 (SSS Signer Accountability): An SSS is
signer accountable, if for any efficient adversary A the
probability that the experiment given in Fig. 18 returns 1 is
negligible (as a function of λ).

7) Sanitizer Accountability: To achieve accountability, a
sanitizer should not be able to blame the signer if the sanitizer
is responsible for a given message. In this game, the adversary
has to generate a message/signature (m∗, σ∗) which makes
Proof generate a proof π, leading Judge to decide that the
signer is accountable, if it is not.

Definition 22 (SSS Sanitizer Accountability): A SSS is
sanitizer accountable, if for any efficient adversary A the
probability that the experiment given in Fig. 19 returns 1 is
negligible (as a function of λ).

8) Public Accountability: Basically, an adversary, i.e., the
sanitizer or the signer, has to be able to make Judge decide
wrongly on an empty proof π. As only Proof needs a secret
key, this captures the required form of public accountability.

Definition 23 (SSS Public Accountability): An SSS is
publicly accountable, if Proof = ⊥, and, if for any efficient
adversary A the probability that the experiment given in
Fig. 20 returns 1 is negligible (as a function of λ).

Note again: we do neither treat transparency nor public ac-
countability as an essential security requirement, as it depends
on the use-case which security property is desired. Suitable
instantiations include, e.g., [12], [20].

C. Proof of Theorem 1

We need to show that our construction is unforge-
able, signer-accountable, sanitizer-accountable, unlinkable,
sanitizer-unforgeable, private, and either transparent or pub-
licly accountable. We prove each property on its own. Note,



Experiment PubaccountabilitySSSA (λ)
(pksig, sksig)← KGsig(1

λ)

(pksan, sksan)← KGsan(1
λ)

(pk∗,m∗, σ∗)← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan)(pksig, pksan)
for i = 1, 2, . . . , q let (mi, ADMi, pksan,i) and σi
index the queries and answers to and from oracle Sign
return 1 if

Verify(m∗, σ∗, pksig, pk∗) = 1, and
∀i ∈ {1, 2, . . . , q} : (pk∗,m∗) 6= (pksan,i,mi) and
Judge(m∗, σ∗, pksig, pk∗,⊥) = Sig

for j = 1, 2, . . . , q′ let (mj ,MODj , σj , pksig,j) and (m′j , σ
′
j)

index the queries and answers to and from oracle Sanit
return 1 if

Verify(m∗, σ∗, pk∗, pksan) = 1, and
∀j ∈ {1, 2, . . . , q′} : (pk∗,m∗) 6= (pksig,j

,m′j) and
Judge(m∗, σ∗, pk∗, pksan,⊥) = San

Fig. 20. SSS Public Accountability

transparency and public accountability are mutually exclusive;
it is required that for transparency the SSS and the RSS are
transparent, while for public accountability, only the SSS needs
to be publicly accountable.

1) Unforgeability: According to the definition, the only
cases where the adversary A wins the game is when it comes
up with a valid signature σ∗ for a new message m∗ which has
not been signed under the given public keys. We can reduce
this case to the unforgeability of the underlying SSS. Let A
be an algorithm which breaks the unforgeability of ARSS. We
can then construct an algorithm B which uses A to break the
unforgeability of the SSS:

1) B creates a key pair of an RSS, i.e., (pkRSSsig , skRSSsig )←
RSS.KGsig(1

λ)
2) B receives both public keys, i.e., pkSSSsig and pkSSSsan of

the SSS to forge.
3) B passes pkSSSsig , pkSSSsan , and pkRSSsig to A as the ARSS’s

public keys.
4) For every query made, B uses its own oracles and

keys to simulate A’s environment.
5) Eventually, A returns a message/signature pair

(m∗, σ∗). If this tuple verifies under the given pub-
lic keys and has not been queried to the signing
or redacting oracles, m∗ is also a fresh message
for the underlying SSS. B can therefore return
((m∗, σ∗RSS, pkRSSsig , pkSSSsig , pkSSSsan ), σ∗SSS), as its own
forgery attempt. The probability that B wins the
SSS unforgeability game is the same as A’s, as the
simulation is perfect and the message m∗ is fresh.

2) Sanitizer-Unforgeability: Both cases where the adver-
sary A wins the game require it to present a valid signature
σ∗ for a message m∗ never been endorsed by the signer under
the given pk∗. We provide a reduction for each case.

Case 1: If pk∗ was never queried we derive an algorithm B
which uses A internally to break the immutability requirement
of the underlying SSS. B proceeds as follows:

1) B creates a key pair of an RSS, i.e., (pkRSSsig , skRSSsig )←
RSS.KGsig(1

λ)
2) B receives the signer’s public keys, i.e., pkSSSsig of the

SSS to forge.

3) B passes pkSSSsig and pkRSSsig to A as the ARSS’s public
keys.

4) For every query made, B uses its own oracles and
keys to simulate A’s environment.

5) Eventually, A returns a message/signature pair
(m∗, σ∗, pk∗), where σ∗ = (σ∗RSS, σ

∗
SSS). By assump-

tion, pk∗ is also a fresh public key of the sanitizer
of the underlying SSS. If this tuple verifies, B can
therefore return (m′, σ∗SSS, pk∗), as σ∗ = (σ∗RSS, σ

∗
SSS)

where m′ = (m∗, σ∗RSS, pkRSSsig , pkSSSsig , pk∗) as its own
forgery attempt. The probability that B wins the
SSS immutability game is therefore the same as
A’s advantage of winning the sanitizer-unforgeability
game of the ARSS, as the simulation is perfect.

Case 2: When a signed m∗ should not have been derivable
by redaction, i.e., m∗ /∈

⋃q
i=1 span�(mi) for every query to

the signing oracle with pk∗, we derive an algorithm B which
uses A internally to break the unforgeability requirement of
the underlying RSS. B proceeds as follows.

1) B creates a key pair of an SSS, i.e., (pkSSSsig , skSSSsig )←
SSS.KGsig(1

λ)
2) B receives the public keys, i.e., pkRSSsig of the RSS to

forge.
3) B passes pkSSSsig and pkRSSsig to A as ARSS’s public

keys.
4) For every query made, B uses its own oracles and

keys to simulate A’s environment.
5) Eventually, A returns (m∗, σ∗, pk∗), where σ∗ =

(σ∗RSS, σ
∗
SSS). This tuple verifies, and, by assumption,

m∗ is not derivable by any query made. Hence,
m∗ is also a forgery of the RSS. B can therefore
return (m∗, σ∗RSS) as its own forgery attempt. The
probability that B wins the RSS unforgeability game
is therefore the same as A’s advantage of winning
the sanitizer-unforgeability game of the ARSS.

3) Privacy: According to the definition of privacy, the
adversary A has to guess a bit. We can simply use A to either
break privacy of the SSS or the RSS. B uses A as a block-box:

1) B tosses a coin b← {0, 1}.
2) If b = 0, B creates both key pairs of an

SSS, i.e., (pkSSSsig , skSSSsig ) ← SSS.KGsig(1
λ) and

(pkSSSsan , skSSSsan ) ← SSS.KGsan(1
λ) and receives RSS’s

public key, pkRSSsig .
3) If b = 1, B creates a key pair of an RSS, i.e.,

(pkRSSsig , skRSSsig ) ← RSS.KGsig(1
λ) and receives SSS’s

public keys, i.e., pkSSSsan and pkSSSsig .
4) B passes pkSSSsig , pkSSSsan and pkRSSsig to A as the ARSS’s

public keys.
5) For every query made, B uses its own oracles/keys

to simulate A’s environment.
6) Eventually, A returns its own guess b∗. B returns

b∗ as its own guess. What is the probability that
B’s guess is correct? Assuming that A’s advantage
against privacy is ε, while at least one of the un-
derlying building blocks must be non-private (we do
not introduce additional information), B’s advantage
against privacy of either the RSS or the SSS is ≥ ε

2 :



the simulation for the correct case was done with
probability of 1

2 .

4) Unlinkability: In the definition of unlinkability, our
adversary A has to guess a bit. Again, we can use A to either
break unlinkability of the SSS or the RSS. As usual, we use
A as a black-box in an algorithm B:

1) B tosses a coin b← {0, 1}.
2) If b = 0, B creates a sanitizer key pair of an SSS,

i.e., (pkSSSsan , skSSSsan )← SSS.KGsan(1
λ).

3) If b = 1, B receives (pkSSSsan ) from its own challenger.
4) B passes pkSSSsan to A as the sanitizer’s public key.
5) For every query made, B uses its own oracles/keys

to simulate A’s environment accordingly.
6) Eventually, A returns its guess b∗. B returns b∗ as its

own guess. What is the probability that B’s guess is
correct? Assuming that A’s advantage against unlink-
ability is ε and not negligible, while at least one of the
underlying building blocks must be non-unlinkability
(we do not introduce additional information), B’s
advantage against unlinkability of either the RSS or
the SSS is ≥ ε

2 , as the simulation for the correct case
was done with probability of exactly 1

2 .

5) Transparency: For transparency, the adversary A has
to also guess a bit. We can simply use A to either break
transparency of the SSS or the RSS. Once more, we use A
as a black-box in an algorithm B:

1) B tosses a coin b← {0, 1}.
2) If b = 0, B creates both key pairs of an

SSS, i.e., (pkSSSsig , skSSSsig ) ← SSS.KGsig(1
λ) and

(pkSSSsan , skSSSsan ) ← SSS.KGsan(1
λ) and receives RSS’s

public key, pkRSSsig .
3) If b = 1, B creates a key pair of an RSS, i.e.,

(pkRSSsig , skRSSsig ) ← RSS.KGsig(1
λ) and receives the

public keys of the SSS, i.e., pkSSSsan and pkSSSsig .
4) B passes pkSSSsig , pkSSSsan and pkRSSsig to A as the ARSS’s

public keys.
5) For every query made, B uses its own oracles/keys

to simulate A’s environment.
6) Eventually,A returns its own guess b∗. B returns b∗ as

its own guess. Assuming that A’s advantage against
transparency is ε, while at least one of the underlying
building blocks must be non-transparent (once more:
we do not introduce additional information in our
construction), B’s advantage against transparency of
either the RSS or the SSS is ≥ ε

2 , as the simulation
for the correct case was done with probability 1

2 .

6) Signer-Accountability: According to the definition
of signer-accountability, the adversary A has to generate
pk∗, π∗,m∗, σ∗ which makes Judge decide wrongly, i.e.,
it outputs San while (m∗, pk∗) has never been queried to
Redact. We use A as a black-box in an algorithm B to break
the signer-accountability of the underlying SSS:

1) B receives pkSSSsan from its own challenger.
2) B passes pkSSSsan to A as the sanitizer’s public key.
3) For every query made, B uses its own Sanit-oracle

to simulate A’s environment.

4) Eventually, A returns (pk∗, π∗,m∗, σ∗). B returns
(pkSSS∗sig , π∗, (m∗, σ∗RSS, pkRSS∗sig , pkSSS∗sig , pkSSSsan ), σ∗SSS),
where σ∗ = (σ∗RSS, σ

∗
SSS) and pk∗ = (pkSSS∗sig , pkRSS∗sig ).

As we only forward queries, and either m∗ or pk∗

are “fresh”, the probability that B wins the SSS
signer-accountability game is therefore the same as
A’s advantage of winning the signer-unforgeability
game of the ARSS.

7) Sanitizer-Accountability: The adversary A has to gen-
erate pk∗,m∗, σ∗ which makes Proof output a proof π which
makes Judge decide wrongly, i.e., Judge outputs Sig while
(m∗, pk∗) has never been queried to Sign. We use A as a
black-box in an algorithm B again to break the sanitizer-
accountability of the underlying SSS:

1) B creates a key pair of an RSS, i.e., (pkRSSsig , skRSSsig )←
RSS.KGsig(1

λ)
2) B receives pkSSSsig from its own challenger.
3) B passes pkSSSsig and pkRSSsig to A as the signer’s public

keys.
4) For every query made, B uses its own oracles and

keys to simulate A’s environment.
5) Eventually, A returns (pk∗,m∗, σ∗). B returns

(pk∗san, (m
∗, σ∗RSS, pkRSSsig , pkSSSsig , pk∗), σ∗SSS), where

σ∗ = (σ∗RSS, σ
∗
SSS). As we only forward queries,

and either m∗ or pk∗ are “fresh”, the probability
that B wins the SSS sanitizer-accountability game is
therefore the same as A’s advantage of winning the
sanitizer-unforgeability game of the ARSS.

8) Public Accountability: According to the definition
of public accountability, the adversary A has to generate
pk∗,m∗, σ∗ which makes Judge decide wrongly on an empty
proof π = ⊥, or the adversary came up with a new public
key/message pair not queried. In both cases, we can reduce
the security of ARSS to the one of the underlying SSS. In
particular, we use A as a black-box in an algorithm B again
to break the public accountability of the underlying SSS:

1) B creates RSS key pair (pkRSSsig , skRSSsig ) ←
RSS.KGsig(1

λ)
2) B receives (pkSSSsig , pkSSSsan ) from its own challenger.
3) B forwards public keys to A as the ARSS’s public

keys.
4) For every query made, B uses its own oracles/keys

to simulate A’s environment.
5) Eventually, A returns (pk∗,m∗, σ∗). If

pk∗ only consists of one value, B returns
(pk∗, (m∗, σ∗RSS, pkRSSsig , pkSSSsig , pk∗), σ∗SSS), where
σ∗ = (σ∗RSS, σ

∗
SSS) and pk∗ = pkSSS∗san . If

pk∗ consists of two public keys, B returns
(pkSSS∗sig , (m∗, σ∗RSS, pkRSS∗sig , pkSSS∗sig , pkSSSsan ), σ∗SSS),
where σ∗ = (σ∗RSS, σ

∗
SSS) and pk∗ = (pkRSS∗sig , pkSSS∗sig ).

What is the probability that B wins its own game?
If pk∗ was never queried, but all public keys are
signed by the SSS, the public accountability of the
underlying SSS is obviously broken. In case Judge
decides wrongly, then m∗ was never queried to
the corresponding oracle, also winning the public
accountability of the underlying SSS. Hence, B’s
advantage equals the one of A.


