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Abstract—The Internet of Things (IoT) presents itself as a
promising set of key technologies to provide advanced smart
applications. IoT has become a major trend lately and smart
solutions can be found in a large variety of products. Since
it provides a flexible and easy way to gather data from huge
numbers of devices and exploit them to provide new applications,
it has become a central research area lately. However, due to
the fact that IoT aims to interconnect millions of constrained
devices that are monitoring the everyday life of people, acting
upon physical objects around them, the security and privacy
challenges are huge. Nevertheless, only lately the research focus
has been on security and privacy solutions. Many solutions and
IoT frameworks have only a minimum set of security, which is
a basic access control. The EU FP7 project RERUM has a main
focus on designing an IoT architecture based on the concepts of
Security and Privacy by design. A central part of RERUM is
the implementation of a middleware layer that provides extra
functionalities for improved security and privacy. This work,
presents the main elements of the RERUM middleware, which
is based on the widely accepted OpenIoT middleware.

I. INTRODUCTION

The recent advances in Information and Communication
Technologies (ICTs) and especially in the domains of the
Wireless Sensor Networks (WSNs) and the Internet of Things
(IoT) have opened up huge opportunities for the development
of “smart” products. Nowadays, a large number of companies
in many domains are trying to embed digital technologies
in their products, aligning themselves to the IoT trend. In
this respect, there are now available smart products, such
as light-bulbs, thermostats, watches, doors, fridges and more.
Moreover, the latest trends in ICT are not only to embed ICT
technology on the products, but also to connect them to the
Internet, using technologies of the IoT. Then, products can
deliver information to the companies or receive commands
and updates from remote servers through IoT applications.

Despite the fact that IoT has attracted a lot of research in the
last decade, the focus on enhancing the security and privacy of
IoT products has been quite limited, which resulted to a new
threat landscape. With hundreds or thousands of smart devices
around us monitoring our everyday activities or controlling
physical objects, it is reasonable to assume that if the IoT
systems are not secure, then either the personal information
of citizens can be easily logged and leaked to third parties
or attackers could exploit vulnerable devices and systems for
their benefit [1].

This paper presents the approach taken by EU project RE-
RUM for the implementation of a middleware that aims to pro-
vide advanced security and privacy functionalities. RERUM’s
main target is to develop a architectural model for creating
IoT systems based on the concept of “security and privacy
by design” [2]. In this respect, RERUM embeds security and
privacy functionalities in components throughout the IoT sys-
tem: starting from the devices (which are normally the weakest
links), the gateways, the middleware and the applications.
For brevity we only describe the RERUM advances in the
field of the middleware, presenting additional functionalities
implemented by RERUM on top of the OpenIoT middleware,
which was taken as a basis.

II. THE RERUM MIDDLEWARE ARCHITECTURE

The RERUM project 1 has based its architecture on the
broadly accepted Architectural Reference Model (ARM) of
the EU lighthouse project Internet of Things Architecture
(IoT-A). Thus, RERUM uses similar terminology as IoT-A
and adopts the basic concepts and ideas of IoT-A for the
general design of its framework. However, RERUM goes one
step beyond and leverages the concepts of IoT-A tailoring
them to its own objectives and system requirements. In this
respect, RERUM assumes the following key building blocks
in an IoT system [3]: (i) the RERUM Devices (RDs) that
can be constrained or unconstrained devices, equipped with
one or multiple sensors and actuators and having the RERUM
embedded mechanisms, (ii) the RERUM Gateway (RGs) that
play the intermediate between the RDs and the rest of the
RERUM system, performing functionalities, such as network
and protocol translation, to allow the RDs (that mostly use
6LoWPAN or ZigBEE) to communicate with the rest of the
RERUM elements that use IPv4, (iii) the RERUM middleware
(RMW) that performs all functionalities for virtualisation, data
processing and service provisioning, (iv) the RERUM security
server that includes all security and privacy related function-
alities. The security server can be developed as a standalone
component talking to the MW via pre-defined interfaces or as
an integrated component of the RERUM middleware. (v) the
Application Server, which can be either an internal component
of the RERUM system or an external component that uses the
RERUM interfaces for service provisioning.

1EU FP7 RERUM: Reliable, Resilient and Secure IoT for Smart City
applications, www.ict-rerum.eu
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Fig. 1. RERUM middleware functional group architecture

The architecture and interconnection of these components
is shown in Fig. 1. Since the focus of the paper is only
on the RERUM middleware, we will not describe the rest
of the components, so the readers can refer to the RERUM
Deliverable D2.5 [3] for those. RERUM follows a main line
of terminology for IoT, using the term Middleware (MW) to
refer to the collection of functional components that are inter-
working for enabling the efficient provisioning of services
from the devices to the users.

The MW in RERUM consists of several functional groups,
as can be seen in Fig. 1. For the implementation of the RMW,
the open-source middleware of the EU FP7 project OpenIoT
([4]) was selected as the most efficient solution, mainly due
to its open-source nature and the fact that it was developed
under the concepts of IoT-A.

The Service Manager in RERUM is responsible for handling
the service requests from the applications (which maps to
the Scheduler and Service Delivery components of OpenIoT),
identifying which are the Virtual Entities (VEs) that are of
interest for the application and tries to match the VEs to pre-
defined templates that exist in the GVO registry (which maps
to the cloud database of OpenIoT). We have to note here
that following the IoT-A concepts, the VEs are the digital
representations of Physical Entities, which are the objects
around us and for which we want to learn some information
(i.e. the chair, the room, a city square, the environment, etc.).

The Generic Virtual Object (GVO) manager (leveraging on
the X-GSN component of OpenIoT) is the entity that creates
and manages the digital representations of the physical objects
and the RERUM Devices (that form the GVOs). The GVO
manager is also a key component that handles the registration
of the RERUM Devices (RDs) to the MW, by mapping the
characteristics of the devices to predefined templates and
storing all information to the GVO registry.

The Federation Manager is the component that creates and
manages the federations of RDs, which provides advanced
services to the end-users, i.e. for enabling devices to cooperate
by performing service composition and orchestration. Finally,
the data and context manager is the functional group that
handles and processes the data gathered from the devices in

order to send them to the applications according to the needs
of each application (i.e. performing averages, filtering data,
etc.). The data and context manager also extracts the context
out of data and passes them on to the applications or to other
MW functionalities (i.e. security). This component maps to
OpenIoT’s Service Delivery and Utility manager.

III. SECURITY AND PRIVACY IN RERUM MW

This section provides an overview of the RERUM-
developed middleware components – as extensions to the
OpenIoT middleware – providing additional security, privacy
and trust functionalities, as well as their interactions. In brief
terms, the components presented here have four functions: (i)
to offer an abstraction of heterogeneous devices by virtual-
ising each of them as a homogeneous accessible/invocable
virtualised object (the Virtual RERUM Device - VRD), (ii) to
remove identifiable features (such as IP and MAC) and their
requirement from any routines managing sensing or acting
devices entirely, (iii) to force a Feature of Interest (FOI)
based discovery process for sensors and actuators and report
processed data only (e.g. averages or readings variations over
a time window) only, and, finally, (iv) to provide privacy-
preserving authenticity and integrity-checking mechanisms.

A. Device templates
A device template represents a semantically described ab-

straction of a specific RD type, containing a description of
only its functional relevant features and addressable sub-
components. More specifically, the template contains infor-
mation on the device model, hardware components (i.e. RAM,
CPU), the default firmware, of the available resources which
can be accessed on the device, their format, their type (i.e.
measurement units, accuracy and sensing-interval in case of
sensors, etc) and a description of how these resources are to
be accessed (e.g. of what command to invoke in order to access
a specific measurement or to trigger a certain command).

For each model or variation (i.e. identical hardware devices
with various firmware), a single template and a relevant iden-
tification code are stored in the RMW. Initially, the templates
can be either provided by a MW administrator or by the RDs
themselves upon registration (only when the reported template
is unknown).

B. Federation templates
A federation template represents an if-then-logic based

construct, consisting of a set of required device templates,
a description of the required input and output resources (of
the RDs), and a set of rules which define their interaction (a
basic example of a federation template would be ”if too-warm
then open-window” case), representing basic automation tasks
supported directly by the RMW.

While the role of device templates is to abstract heteroge-
neous, distinctive devices as homogeneous virtualized objects
and support a consistent access pattern to any of the available
RDs (either sensors and actuators), the role of templates is:
(i) to provide an extensible, transparent automated services to



end-users, and (ii) to provide automated services which would
normally require for an end-user to have access to specific
individual RDs only or which would require a granularity in
the discovery of the required RDs which would rise privacy
and security concerns. A federation logic meant to exclude
malfunctioning temperature nodes ran by an end-user, for
example, would require the user to be able to identify and link
RDs providing temperature readings in a series of readings.

C. Device registration
Upon registering with the middleware, a RDs is registered

in two of the middleware components: in the RG, and in
the RMW. The RG, which is responsible for the creation
and communication with the underlying, local sensor network,
only registers the IP (v4 or v6) or MAC addresses. It then
proceeds to generate a 128 bit random, unique identifier,
which is mapped to the local address and then reported to the
RMW alongside the template identifier reported by the newly
registered RD. The RMW links and stores the reported unique
identifier to the device template, and then proceeds to expose
the newly added virtualised RD (we will refer in the remainder
of this paper to both the virtualised and the physical RERUM
devices as RD, although the RMW will only access and read to
the virtualised representation) to relevant subsequent queries,
based on the template’s features.

Withholding the local address from the RMW has two
advantages: first, it avoids address collisions in the global
device registry. And second, it removes the need of storing
relevant traceable identity-related RD data, such as IP or MAC.

In addition, a second optional registration message provided
by the RD to the RG and forwarded to the RMW includes a list
of allowed data consumers and processing goals. E.g., a sensor
might disallow the use of its resources by private corporations,
and only limit its usage to state-run agencies:

{128 bit node identifier, model identifier,

optional privacy constraints definition}

D. Temporary per-client data buffers
Storing data over a longer period of time poses security

and privacy, as well as legal challenges, such as unauthorized
access due to malicious intrusions leading to data leakage,
long-term data integrity, its segregation, physical disruption,
unauthorized access, or complying to multiple legal require-
ments concerning the storage of personal and private data.

A design choice therefore was to not provide a long-term
storage option for the RD readings. Instead, temporary buffers
are created for only those readings which are relevant for an
application or a client’s request, and which are meant only to
store the RD data until its consumption. More specifically, only
those RDs whose data is of relevance to an end-client have
their data sensing and transmission enabled, data which is then
temporary stored in a non-persistent buffer only accessible by a
single specific end-client. The administrator of the middleware
can also adjust the time to live flag for such data buffers, e.g.
for them to only contain the readings of the last five minutes,
if those older are not of relevance or considered to be obsolete.

The removal of the buffers occurs automatically once the
end-clients activity ends. Even in the cases in which multiple
clients issue similar data requests, data is duplicated and
stored in the per-client queue. The implementations based on
a third-party solution, namely making use of the RabbitMQ
framework [8], integrated into the RMW. The messaging
queues act as buffers, and have both the time to live flags
and the auto-expiration flags set: the former ensures that
older sensor readings will automatically be removed after a
configured period, while the latter ensures that after a certain
inactivity period, the queues themselves are deleted.

In order to comply with privacy, confidentiality and legal
requirements, the access to the RD data (and more directly,
enabling of the sensing and transmission of data on the RDs
themselves) is verified during the process of evaluating each
client’s discovery request through the Security Server.

E. Feature of interests
Features of interest (FOIs), are digital representations of

a physical or geographical object. FoIs logically represent
the entity which an RD (or a group of RDs) is able to
observe or manipulate through sensing or actuating. FOIs are
already part of the OpenIoT middleware. More specifically, the
FOIs represent optional meta-data associated to each registered
sensor, and which may provide additional human readable
information for each available sensor.

In RERUM, the FOIs take a central role in the registration
and the discovery of RDs. The gateways assign to each
registered sensor reported to the RMW a set of one or more
FOIs. This assignment by the RGs of FOIs to the devices
can be either (i) automatically, case in which the FOIs in
the gateway’s reach are by default assigned to each registered
sensor; or (ii) by using a gateway-owner defined configuration
file which maps certain sensors types to only specific FOIs.

Each FOI can be linked to one or more RGs (an intersection,
for example, can be observed by a set of nodes belonging
to multiple gateways) - linking which, in the current version
of the RERUM, is realized by configuring either the RMW
by an administrator, or by a gateway owner through per-RGs
configuration files.

F. The Stream Processor
The Stream Processor (SP) enables the execution of func-

tions such as data aggregation, the computing of mean, min-
imum or maximum values and other window functions over
data streaming from a set of RDs. Thus, it is possible to pro-
vide refined and filtered information or even to take decisions
based on the particular requirements of client applications.

RERUM’s SP is a specific implementation of the generic
and scalable architecture for distributed Complex Event Pro-
cessing presented in [15] . This architecture and therefore the
SP is based on a Complex Event Processor (CEP) engine
which consists of a state machine which executes the incoming
events based on a set of rules defined in a declarative language
(called DOLCE) and it is used to correlate the events that
are received. The particular implementation that is part of



Fig. 2. Stream Processor architecture

RERUM architecture is described in Fig. 2. The Stream
processor exposes a REST API that allows defining the rules
(functions) that will be applied to each data stream, which
is associated to a Discovery request performed by a client
application regarding a FOI that groups different RDs. The
Event Collector subscribes to the corresponding RMW queues
in order to retrieve the data and send them to the CEP engine in
the appropriate internal format. At the same time, the Complex
Event Publisher listens to the output of the CEP, forwarding
the added value information to the corresponding MW queues.

This flexible solution enables new functions to be seam-
lessly integrated as part of the RERUM environment since it
only requires that the RMW accepts the new method (e.g.,
count data) as part of the sensors Discovery interface and
passes a new DOLCE rule to the SP.

G. Data discovery

The FOIs play a determining role in the RD discovery
process. More specifically, each discovery process consists of
a triple which specifies (i) the FOI which the end-client intends
to observe, freely available from the middleware under certain
restrictions (i.e. public or private), (ii) the type or types of
observations of the FOI, as units: Celsius for temperature,
dB for noise etc., and the (iii) type of source processing the
middleware is to apply to the raw data: average, minimum or
maximum values over a time window:

{FOI Name, unit : {Celsius, dB}, source : average}

The RMW, having FOIs linked to all the registered sensors,
as well as complete description of each sensors instance
through its linked device template, is able to identify (and
enable) relevant RDs, forwarding their date to the SP, its
output then being stored in the client’s data buffer. When
multiple readings are requested, alongside the stream processor
output values, an indicator of the type of data is also provided
- determining, for example, which of the readings reflect
temperature and which of them reflect the sound intensity.

Similarly, for federation, the triple replaces the source
option with the federation which is to be run:

{FOI Name, unit : {Celsius, dB}, Federation Name}

In the case of federation, their execution involves two steps:
first, of checking whether the specified FOI indeed is observed
by all the required RDs and, if so, to execute the federation
logic. This can be performed either through the SPIN [7] pro-
posed standard which defines the representation of SPARQL
and constraints, or through the use of more complex integrated
third party framework - the JBoss SwitchYard [9].

The scope of choosing the FOIs, units and source processed
as the output, respectively, is in avoiding leaking any informa-
tion to the end-client regarding the actual RDs providing the
readings, as well as their number and the frequency with which
they perform the sensing. It therefore provides unlinkability
[5] under the assumption that each type of measurements is
supported by a significant large number of sensors (the l-
Diversity [6] requirement).

H. Actuator discovery
The chosen approach proves challenging when discovering

and controlling actuators is required. In particular, being
unable to determine or address single RDs implies end-clients
unable to precisely address single specific entities.

The middleware is therefore limited to two possible courses
of actions: (i) for the cases in which the discovery process
identifies multiple RD actuators of the same type (unit) for a
specific FOI, any actuator command would be propagated to
all simultaneously. (ii) To only accept discoveries and expose
RD actuators when there is only a single relevant actuator
unit satisfying the discovery request. Although limiting, the
second option mainly contributes to the overall safety of
the environments controlled by the middleware, since the
invocation of a command would affect only one (expected)
actuator. This representing a controlled scenario, in contrast
to the first described action, in which the number of affected
devices would be unknown.

RERUM has therefore decided to implement the second op-
tion, and to offer the alternative invocation of (more) complex
federation templates when the controlling of the RD actuators
might be performed under such automation.

I. Signatures for Integrity
Integrity is a security property of the communicated mes-

sage (data or command) which is violated whenever the
message becomes modified in an unauthorized way, without
being detectable [11]. While unauthorized modifications that
occur due to transmission errors (accidental) are usually de-
tected by checksums [12], an active attack however requires a
cryptographic level of integrity protection – digital signatures.

In order to prevent those attacks integrity protection mecha-
nisms must be employed already on the RERUM device when
it sends or receives data. For example if the device receives
important commands like firmware updates via over-the-air
(OTA) programming. RERUM thus empowered the devices



with the required digital signature capabilities, which proved
to be possible for the RDs using elliptic curve cryptography
(ECC) [13], [14]. RERUMs architecture allows end-to-end
integrity protection by signing data using a JSON Sensor
Signature (JSS) [14] generated on the constrained device itself
(enabled by the MW by issuing a COAP request for JSS
signed data). Using the initially boot strapped credentials, e.g.
from a deployed flat PKI, the MW can authenticate the origin
(e.g. to identify a specific RERUM device). The per device
key strongly authenticates the origin, verifies that it was not
maliciously tampered with and also greatly reduces the impact
of key extraction attacks. Relying on cryptographically strong
— ECC at least 192bit — authentication enables the MW
to base its trust scoring on the identified origin and on the
knowledge that data was not changed without authorization
after the signature was generated on the RERUM device.
RERUM’s digital signature thus rules out all network and
data based attacks carried out by parties with a man-in-the-
middle (or privileged data flow) position. Depending on the
need the MW does signed communication transparent or in
an end-to-end fashion for the application. When transparent
the application does not see that the actually signed values
or commands. However, then the protection terminates inside
the MW. Hence, RERUM strongly suggests and supports
end-to-end message level integrity. The signature can then
be validated by any application higher up in the IoT data-
processing chain, e.g. the users smartphone or the application
server. The verification key is public and can be distributed by
the MW on request. Finally, since there may be selected and
well-defined modifications required to packets due to privacy
and confidentiality concerns, RERUM also foresees the use of
redactable [17] and sanitizable signatures [18].

IV. CONCLUSION

This work presented the key RERUM-specific additions of
the RMW implementation, based on one of the early OpenIoT
MW releases, whose goal is to improve the security and
privacy preserving capabilities of the MW and to add the basic
functionalities upon which more advanced techniques can be
build. Having the per-client data queues, for example, one can
really distinguish and isolate the data that are sent to each
client, and safely process it accordingly (e.g. by removing
sensitive data from clients unauthorized to access certain
values). Additionally, the removal of the identifiers of the
sensors and their abstraction in homogeneous template-based
representation significantly improves the system privacy, since
the users or MW operator will not be able to identify exactly
which sensor is located where and which one is sending
data. At the same time though, the reliability and trustwor-
thiness mechanisms ensure that the data are both reliable and
trustworthy (leveraging on encryption and integrity protection
mechanisms). For MW–to–gatway communication, RERUM
specifies a virtual private network (VPN) connection, in order
to ensure that only authorized gateways are sending data to
the RMW in a secure way. An access control mechanism
integrated with the MW is also in place.

Computationally, the observable performance-security
tradeoff at the middleware layer incurred by the introduction
of the security mechanisms is insignificant (less than five
percent). A more significant impact, as expected, is reflected
at the underlying sensor network level (RERUM devices and
local gateways). Since this falls outside the scope of the
paper, we refer the reader to the detailed RERUM report on
the topic in [19]

Features of the RMW that have not been implemented yet
are mostly related with enabling users to adjust privacy and
security policies. This can be easily integrated in the RMW,
which provides capabilities for activation and de-activation
of data collection using a simple mechanism for starting or
canceling observations via CoAP commands that originate
from the MW and go through the gateway to the devices.
That way, a user could be able to de-activate the gathering of
data from one of his devices if he changes dynamically his
privacy policies. Finally, user privacy is also ensured via the
device and data anonymisation that exist on the MW through
the device registration scheme and the fact that the data that
arrive at a client have no identifiers for the origin of the data.
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