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Abstract. Sanitizable signatures are a variant of digital signatures where a designated party (the sanitizer) can
update admissible parts of a signed message. At PKC ’17, Camenisch et al. introduced the notion of invisible
sanitizable signatures that hides from an outsider which parts of a message are admissible. Their security definition of
invisibility, however, does not consider dishonest signers. Along the same lines, their signer-accountability definition
does not prevent the signer from falsely accusing the sanitizer of having issued a signature on a sanitized message
by exploiting the malleability of the signature itself. Both issues may limit the usefulness of their scheme in certain
applications.

We revise their definitional framework, and present a new construction eliminating these shortcomings. In contrast
to Camenisch et al.’s construction, ours requires only standard building blocks instead of chameleon hashes with
ephemeral trapdoors. This makes this, now even stronger, primitive more attractive for practical use. We underpin
the practical efficiency of our scheme by concrete benchmarks of a prototype implementation.

1 Introduction

Digital signatures are an important means to protect the integrity and authenticity of digital data. Ordinary
digital signatures are all-or-nothing in the sense that once a message has been signed, it is only possible to
verify whether the signature is valid for the entire original message or not. In particular, it is not possible
to update (parts of) a signed message in a determined manner without invalidating the signature. However,
there are many real-life use cases in which a subsequent modification of the signed data by some designated
entity is desired. As an illustrative example consider a patient record that is signed by a medical doctor. The
accountant, tasked to charge an insurance company, requires authentic information about the treatments and
the patient’s insurance number, but not of other parts of the patient record. Clearly, when using conventional
digital signatures to guarantee the authenticity of the patient record, far too much information is revealed to
the accountant. One solution to avoid such privacy intrusive practices would require the doctor to re-sign only
the data relevant for the accountant. However, this would have to be repeated every time a new subset of the
record needs to be forwarded to some party that demands authentic information. Especially, this would induce
too much overhead to be practical in real scenarios, or may even be impossible due to loss of availability of
the doctor for signing subsets from old documents.
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Sanitizable signature schemes (SSS) [3] allow for such controlled modifications of signed messages without
invalidating the signature. In fact, they are more general than strictly needed by the given example: when
signing, the signer determines which blocks m[i] of the message m = (m[1],m[2], . . . ,m[i], . . . ,m[`]) can be
updated (i.e., are flagged admissible). Any such admissible block can later be changed to a different bitstring
m[i]′ ∈ {0, 1}∗, where i ∈ {1, 2, . . . , `}, by a designated party named the sanitizer. The sanitizer is represented
by a public key. The sanitization process requires the corresponding private key, but does not require the signer’s
involvement. Sanitization of a message m results in an altered message m′ = (m[1]′,m[2]′, . . . ,m[i]′, . . . ,m[`]′),
where m[i] = m[i]′ for every non-admissible block, and also a signature σ′, which verifies under the given
public keys. Hence, authenticity of the message m′ is still ensured. Coming back to the above example, playing
the role of the sanitizer, a server storing the signed patient records is able to black-out the sensitive parts of a
signed patient record, without any additional communication with the doctor, and, in particular, without
access to doctor’s signing key.

Concrete real-world applications of SSSs include secure routing, privacy-preserving document disclosure,
anonymous credentials, group content protection, and blank signatures [3, 12, 13, 14, 20, 21, 24, 35].

Motivation. Recently, the property of invisibility was proposed by Camenisch et al. [15] as a very strong
notion of privacy for SSS.7 Informally, this property guarantees that an outsider cannot even decide which
blocks of a signed message are admissible. This property is especially useful, if it must be hidden which parts
of a signed message can be changed by a sanitizer. However, their invisibility definition is weak in the sense
that it is not possible to query the sanitization oracle for keys different from the challenged ones. Thus, as
soon as the adversary gains access to a sanitization oracle, it may be able to decide this question, which may
be too limiting, or surprising, in certain use-cases. This is in particular relevant, if a sanitizer needs to sanitize
messages from multiple signers: in one of their application scenarios, a cloud-service is used to outsource some
computations. The results, however, need to be signed by the outsourcing party. Using SSSs, the cloud can
sanitize a signed message, and input the result of the computation. However, it must remain hidden which
computations are outsourced to protect trade secrets. This is precisely captured by the invisibility property.
However, if the cloud-service uses the same key pair for multiple clients, Camenisch et al.’s [15] definition
is not sufficient. Moreover, their construction does not achieve “strong signer-accountability”, as defined by
Krenn et al. [40]. Namely, they do not prevent the signer from exploiting the malleability of previously seen
sanitized signatures to accuse the sanitizer of having created one particular signature. We stress that this only
addresses the signature; the message in question still needs to be issued by the sanitizer at some point. We
stress that this limitation is explicitly mentioned by Camenisch et al. [15]. Nonetheless, lacking both properties
may lead to some practical issues. For “strong signer-accountability”, this was already pointed out by Krenn
et al. [40], and thus it is desirable to achieve the strengthened properties.

Contribution. Our contribution is manifold. (1) We present a strengthened invisibility definition dubbed
strong invisibility, which even protects against dishonest signers. (2) We present a provably secure construction
of strongly invisible sanitizable signatures, which (3) also achieves a stronger accountability notion compared
to the construction by Camenisch et al. [15]. In particular, we exclude the malleability of the signatures,
even for signers. This makes our construction suitable for a broader range of applications. Moreover, (4) our
construction does not require chameleon-hashes with ephemeral trapdoors, and can thus be considered simpler
than the one in [15], as only standard primitives are required. In more detail, the construction is solely based on
unique signatures, labeled CCA2-secure encryption schemes, and collision-resistant chameleon-hashes, paired
with a special and novel way to generate randomness for the chameleon-hashes. Finally, (5) to demonstrate
that our construction is practical, we have implemented it. The evaluation shows that the primitive is efficient
enough for most use-cases.

7 Their idea dates back to the original paper by Ateniese et al. [3], which name this property “strong transparency” (cf. Pöhls et
al. for a discussion [49]). However, they neither provide a formal definition nor a provably secure construction.

2



Related Work and State-of-the-Art. SSSs have been introduced by Ateniese et al. [3], and later most of
the current security properties were introduced by Brzuska et al. [10] (with some later refinements due to Gong
et al. [34]). Later on, additional properties such as (strong) unlinkability [12, 14, 30], and non-interactive public
accountability [13, 14] were introduced. Quite recently, Krenn et al. further refined the security properties to
also account for the signatures in analogy to the strong unforgeability of conventional signatures [40].

Invisibility of SSS, formalized by Camenisch et al. [15], prohibits that an outsider can decide which blocks
are admissible, dating back to the original ideas by Ateniese et al. [3]. We extend their work, and use the
aforementioned results as our starting point for the strengthened definitions. Miyazaki et al. also introduce
invisibility of sanitizable signatures [46]. However, they actually address the related, but different [44], concept
of redactable signatures [9, 25, 37, 50, 51].

Also, several extensions such as limiting the sanitizer to certain values [18, 26, 39, 49], SSSs which
allow the signer to add new sanitizers after signing [20, 52], SSSs for multi-sanitizer and multi-signer
environments [11, 14, 19], as well as sanitization of signed encrypted data [22, 29] have been considered. SSSs
have also been used as a tool to make other primitives accountable [48], and to construct other primitives,
such as redactable signatures [8, 44]. Also, SSSs for data-structures that are more complex than simple
lists have been considered [49]. Our results carry over to the aforementioned extended settings with only
minor additional adjustments. Implementations of SSSs are also presented, proving that this primitive is
practical [13, 14, 43, 47].

Finally, we note that computing on signed messages is a much broader field, and refer to [1, 9, 23, 32, 33]
for comprehensive overviews of other related primitives.

2 Preliminaries

Let us give our notation, assumptions, and the required building blocks, first. All formal security definitions
are given in App. A.

Notation. The main security parameter is denoted by λ ∈ N. All algorithms implicitly take 1λ as an additional
input. We write a ← A(x) if a is assigned to the output of algorithm A with input x. If we use external
random coins r, we use the notation a ← A(x; r), where r ∈ {0, 1}λ. An algorithm is efficient if it runs in
probabilistic polynomial time (ppt) in the length of its input. For the remainder of this paper, all algorithms
are ppt if not explicitly mentioned otherwise. Most algorithms may return a special error symbol ⊥ /∈ {0, 1}∗,
denoting an exception. If S is a set, we write a← S to denote that a is chosen uniformly at random from S.
For a message m = (m[1],m[2], . . . ,m[`]), we call m[i] a block, while ` ∈ N denotes the number of blocks in a
message m. For a list we require that we have a unique, injective, and efficiently reversible, encoding, mapping
the list to {0, 1}∗. In the definitions, we speak of a general message space M to be as generic as possible. For
our instantiations, however, we let the message space M be {0, 1}∗ to reduce unhelpful boilerplate notation.
A function ν : N→ R≥0 is negligible, if it vanishes faster than every inverse polynomial, i.e., ∀k ∈ N, ∃n0 ∈ N
such that ν(n) ≤ n−k, ∀n > n0. For certain security properties we require that values only have one canonical
representation, e.g., a “2” is not the same as a “02”, even if written as elements of N.

Pseudo-Random Functions PRF.

Definition 1 (Pseudo-Random Functions PRF). A pseudo-random function PRF consists of two algo-
rithms (KGenprf ,Evalprf) such that:

KGenprf . The algorithm KGenprf outputs the secret key of the PRF: κ← KGenprf(1λ).
Evalprf . The deterministic algorithm Evalprf gets as input the key κ, and the value x ∈ {0, 1}λ, to evaluate. It

outputs the evaluated value v ← Evalprf(κ, x), v ∈ {0, 1}λ.
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Pseudo-Random Generators PRG. We assume PRGs with a constant stretching factor of 2, as this is
sufficient for our setting.

Definition 2 (Pseudo-Random Number-Generators PRG). A pseudo-random number-generator PRG
consists of one algorithm (Evalprg) such that:

Evalprg. The deterministic algorithm Evalprg gets as input the value x ∈ {0, 1}λ to evaluate. It outputs the
evaluated value v ← Evalprg(x), v ∈ {0, 1}2λ.

Digital Signatures Σ. Subsequently, we introduce unique and strongly unforgeable signatures.

Definition 3 (Digital Signatures Σ). A signature scheme Σ is a triple (KGenΣ , SignΣ ,VerifyΣ) of ppt
algorithms such that:

KGenΣ. The algorithm KGenΣ outputs the public, and the corresponding private key: (skΣ , pkΣ)← KGenΣ(1λ).
SignΣ. The algorithm SignΣ gets as input the skΣ, the message m ∈ M, and outputs a signature σ ←

SignΣ(skΣ ,m).
VerifyΣ. The deterministic algorithm VerifyΣ receives as input a public key pkΣ a message m, and a signatures

σ. It outputs a decision bit d ∈ {false, true}: d← VerifyΣ(pkΣ ,m, σ).

Definition 4 (Secure Digital Signatures). A signature scheme Σ is secure, if it is correct, strongly
unforgeable, and unique.

A concrete instantiation satisfying Definition 4 is RSA-FDH, where the signer also proves the well-formedness
of the public key, i.e., that it defines a permutation, and is not lossy [38]. This can, e.g., be achieved by
requiring a prime public exponent e larger than the modulus n, and a verifier also checks that σ ∈ Z∗n.

Labeled Public-Key Encryption Schemes Π. Public-key encryption with labels allows to encrypt a
message m using a given public key pk so that the resulting ciphertext can be decrypted using the corresponding
secret key sk [17], and some, potentially public, label ϑ:

Definition 5 (Labeled Public-Key Encryption Schemes). A labeled public-key encryption scheme Π
is a triple (KGenΠ ,EncΠ ,DecΠ) of ppt algorithms such that:

KGenΠ . The algorithm KGenΠ outputs the private, and public, keys of the scheme: (skΠ , pkΠ)← KGenΠ(1λ).
EncΠ . The algorithm EncΠ gets as input the public key pkΠ , the message m ∈M, and some label ϑ ∈ {0, 1}∗.

It outputs a ciphertext c: c← EncΠ(pkΠ ,m, ϑ).
DecΠ . The deterministic algorithm DecΠ on input a private key skΠ , a ciphertext c, and some label ϑ outputs

a message m ∈M∪ {⊥}: m← DecΠ(skΠ , c, ϑ).

Definition 6 (Secure Labeled Public-Key Encryption Schemes). A labeled public-key encryption
scheme Π is secure, if it is correct, and IND-CCA2-secure.

Chameleon-Hashes. The given framework is based upon the work done by Camenisch et al. [15].

Definition 7. A chameleon-hash CH is a tuple of five ppt algorithms (CHPGen,CHKGen,CHash,CHCheck,
CHAdapt), such that:

CHPGen. The algorithm CHPGen outputs public parameters of the scheme: ppch ← CHPGen(1λ). For brevity,
we assume that ppch is implicit input to all other algorithms.

CHKGen. The algorithm CHKGen given the public parameters ppch outputs the private, and public, keys of the
scheme: (skch, pkch)← CHKGen(ppch).
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Experiment IndistinguishabilityCH
A (λ)

ppch ← CHPGen(1λ)
(skch, pkch)← CHKGen(ppch)
b← {0, 1}
a← AHashOrAdapt(skch,·,·,b),CHAdapt(skch,·,·,·,·)(pkch)

where oracle HashOrAdapt on input skch,m,m
′, b:

(h, r)← CHash(pkch,m
′)

(h′, r′)← CHash(pkch,m)
r′′ ← CHAdapt(skch,m,m

′, r′, h′)
If r = ⊥ ∨ r′′ = ⊥, return ⊥
if b = 0:

return (h, r)
if b = 1:

return (h′, r′′)
return 1, if a = b
return 0

Fig. 1: CH Indistinguishability

Experiment CollResCH
A (λ)

ppch ← CHPGen(1λ)
(skch, pkch)← CHKGen(ppch)
Q ← ∅
(m∗, r∗,m′∗, r′∗, h∗)← ACHAdapt′(skch,·,·,·,·)(pkch)

where oracle CHAdapt′ on input skch,m,m
′, r, h:

return ⊥, if CHCheck(pkch,m, r, h) 6= true
r′ ← CHAdapt(skch,m,m

′, r, h)
If r′ = ⊥, return ⊥
Q ← Q∪ {m,m′}
return r′

return 1, if CHCheck(pkch,m
∗, r∗, h∗) = true ∧

CHCheck(pkch,m
′∗, r′∗, h∗) = true ∧

m′∗ /∈ Q ∧ m∗ 6= m′∗

return 0
Fig. 2: CH Collision Resistance

CHash. The algorithm CHash gets as input the public key pkch, and a message m to hash. It outputs a hash h,
and some randomness r: (h, r)← CHash(pkch,m).8

CHCheck. The deterministic algorithm CHCheck gets as input the public key pkch, a message m, randomness
r, and a hash h. It outputs a decision d ∈ {false, true} indicating whether the hash h is valid: d ←
CHCheck(pkch,m, r, h).

CHAdapt. The algorithm CHAdapt on input of secret key skch, the message m, the randomness r, hash h, and
a new message m′ outputs new randomness r′: r′ ← CHAdapt(skch,m,m

′, r, h).

Correctness. For a CH we require the correctness property to hold. In particular, we require that for all λ ∈ N,
for all ppch ← CHPGen(1λ), for all (skch, pkch)← CHKGen(ppch), for all m ∈M, for all (h, r)← CHash(pkch,m),
for all m′ ∈M, we have for all for all r′ ← CHAdapt(skch,m,m

′, r, h), that true = CHCheck(pkch,m, r, h) =
CHCheck(pkch,m

′, r′, h). This definition captures perfect correctness.

Indistinguishability. Indistinguishability requires that the randomness r does not reveal if it was obtained
through CHash or CHAdapt. The messages are chosen by the adversary.

Definition 8 (Indistinguishability). A chameleon-hash CH is indistinguishable, if for any ppt adversary A
there exists a negligible function ν such that

∣∣∣Pr[IndistinguishabilityCH
A (λ) = 1]− 1

2

∣∣∣ ≤ ν(λ) . The corresponding
experiment is depicted in Fig. 1.

Collision Resistance. Collision resistance says, that even if an adversary has access to an adapt oracle, it
cannot find any collisions for messages other than the ones queried to the adapt oracle. Note, this definition is
stronger than key-exposure freeness [5].

Definition 9 (Collision-Resistance). A chameleon-hash CH is collision-resistant, if for any ppt adversary
A there exists a negligible function ν such that Pr[CollResCH

A (1λ) = 1] ≤ ν(λ). The corresponding experiment
is depicted in Fig. 2.

Uniqueness. Uniqueness requires that it is hard to come up with two different randomness values for the same
message m∗ such that the hashes are equal, for the same adversarially chosen pk∗.

8 The randomness r is also sometimes called “check value” [4].
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Experiment UniquenessCH
A (λ)

ppch ← CHPGen(1λ)
(pk∗,m∗, r∗, r′∗, h∗)← A(ppch)
return 1, if CHCheck(pk∗,m∗, r∗, h∗) = CHCheck(pk∗,m∗, r′∗, h∗) = true ∧ r∗ 6= r′∗

return 0
Fig. 3: CH Uniqueness

CHPGen(1λ): Call RSAKGen with the restriction e > n′, and e prime. Return e.
CHKGen(ppch): Generate p, q using RSAKGen(1λ). Let n = pq. Compute d such that ed ≡ 1 mod ϕ(n). Return (skch, pkch) = (d, n).
CHash(pkch,m): Draw r ← Z∗n. If external random coins r′ is used, one can use the random oracle, i.e., r ← Hn(r′). Let

h← Hn(m)re mod n. Return (h, r).
CHCheck(pkch,m, r, h

′): If r /∈ Z∗n, return false. Let h← Hn(m)re mod n. Return true, if h = h′, and false otherwise.
CHAdapt(skch,m,m

′, r, h): If CHCheck(pkch,m, r, h) = false, return ⊥. If m = m′, return r. Let g ← Hn(m), y ← gre mod n,
and g′ ← Hn(m′). Return r′ ← (y(g′−1))d mod n.

Construction 1: Secure CH

Definition 10 (Uniqueness). A chameleon-hash CH is unique, if for any ppt adversary A there exists a
negligible function ν such that Pr[UniquenessCH

A (1λ) = 1] ≤ ν(λ). The corresponding experiment is depicted in
Fig. 3.

Definition 11 (Secure Chameleon-Hashes). We call a chameleon-hash CH secure, if it is correct, indis-
tinguishable, collision-resistant, and unique.

RSA Instance Generator. Let (n, p, q, e, d)← RSAKGen(1λ) be an instance generator which returns an RSA
modulus n = pq, where p and q are distinct primes, e > n′ an integer co-prime to ϕ(n), and de ≡ 1 mod ϕ(n).
Here, n′ is the largest RSA modulus possible w.r.t. λ. It is assumed that e is prime and chosen independently
of p and q, while d is calculated from e, and not vice versa.

The Chameleon-Hash by Camenisch et al. [15]. Next, as Construction 1, we restate the construction
by Camenisch et al. [15], which is secure, if the one-more RSA-Assumption [6] holds. Now, let CH := (CHPGen,
CHKGen,CHash,CHCheck,CHAdapt) as defined in Construction 1. Hn : {0, 1}∗ → Z∗n, with n ∈ N, denotes a
random oracle. Each n is implicitly required to have λ bits. This is not explicitly checked in the algorithms.

3 Stronger Invisible Sanitizable Signatures

We now present our framework for strongly invisible sanitizable signatures, along with the strengthened
security model, and a provably secure construction based on only standard primitives.

3.1 The Framework for Sanitizable Signature Schemes

Subsequently, we introduce the framework for SSSs. The definitions are essentially the ones given by Camenisch
et al. [15], which are itself based on existing work [10, 13, 14, 3, 34, 40]. However, due to our goals, we
need to re-define the security experiments. Like Camenisch et al. [15], we do not consider “non-interactive
public accountability” [13, 14, 36], which allows a third party to decide which party is accountable, instead
transparency is achieved, which is mutually exclusive to this property. However, it remains elegantly easy to
achieve, e.g., by signing the signature again [13, 15].

For brevity, we now set some additional notation. This notation is based on existing definitions, making
reading more comfortable [10, 15]. The variable ADM contains the set of indices of the modifiable blocks,
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as well as ` denoting the total number of blocks in the message m. We write ADM(m) = true, if ADM is
valid w.r.t. m, i.e., ADM contains the correct ` and all indices are in m. For example, let ADM = ({1, 2, 4}, 4).
Then, m must contain four blocks, and all but the third are admissible. If we write mi ∈ ADM, we mean that
mi is admissible. MOD is a set containing pairs (i,m[i]′) for those blocks that are modified, meaning that
m[i] is replaced with m[i]′. We write MOD(ADM) = true, if MOD is valid w.r.t. ADM, meaning that the
indices to be modified are contained in ADM. To allow for a compact presentation of our construction, we
write [X]n,m, with n ≤ m, for the vector (Xn, Xn+1, Xn+2, . . . , Xm−1, Xm).

Definition 12 (Sanitizable Signatures). A sanitizable signature scheme SSS consists of the ppt algorithms
(SSSPGen,KGensig,KGensan,Sign,Sanit,Verify,Proof, Judge) such that:
SSSPGen. The algorithm SSSPGen, on input security parameter λ, generates the public parameters: ppsss ←

SSSPGen(1λ). We assume that ppsss is implicitly input to all other algorithms.
KGensig. The algorithm KGensig takes the public parameters ppsss, and returns the signer’s private key and the

corresponding public key: (sksig, pksig)← KGensig(ppsss).
KGensan. The algorithm KGensan takes the public parameters ppsss, and returns the sanitizer’s private key as

well as the corresponding public key: (sksan, pksan)← KGensan(ppsss).
Sign. The algorithm Sign takes as input a message m, sksig, pksan, as well as a description ADM of

the admissible blocks. If ADM(m) = false, this algorithm returns ⊥. It outputs a signature σ ←
Sign(m, sksig, pksan,ADM).

Sanit. The algorithm Sanit takes a message m, modification instruction MOD, a signature σ, pksig, and sksan.
It outputs m′ together with σ′: (m′, σ′)← Sanit(m,MOD, σ, pksig, sksan) where m′ ← MOD(m) is message
m modified according to the modification instruction MOD.

Verify. The algorithm Verify takes as input the signature σ for a message m w.r.t. the public keys pksig, and
pksan. It outputs a decision d ∈ {true, false}: d← Verify(m,σ, pksig, pksan).

Proof. The algorithm Proof takes as input sksig, a message m, a signature σ, a set of polynomially many
additional message/signature pairs {(mi, σi)}, and pksan. It outputs a string π ∈ {0, 1}∗ which can be
used by the Judge to decide which party is accountable given a message/signature pair (m,σ): π ←
Proof(sksig,m, σ, {(mi, σi) | i ∈ N}, pksan).

Judge. The algorithm Judge takes as input a message m, a signature σ, pksig, pksan, as well as a proof
π. Note, this means that once a proof π is generated, the accountable party can be derived by anyone
for that message/signature pair (m,σ). It outputs a decision d ∈ {Sig,San}, indicating whether the
message/signature pair has been created by the signer, or the sanitizer: d← Judge(m,σ, pksig, pksan, π).

Correctness of Sanitizable Signature Schemes. The usual correctness requirements must hold, i.e., every signed
and sanitized message/signature pair should verify, while a honestly generated proof on a honestly generated
message/signature pair points to the correct accountable party. We refer to Brzuska et al. [10] for a formal
definition, which straightforwardly extends to this framework.

3.2 Security of Sanitizable Signature Schemes

Next, we introduce the security model, based on the work done by Camenisch et al. [15], but extended to
account for our new insights. In other words, we strengthen their invisibility notion, and achieve strong
signer-accountability [40].

Unforgeability. This definition requires that an adversary A, not having any secret keys, is not able to
produce any valid signature σ∗ which it has not seen, even if A has full oracle access.

Definition 13 (Unforgeability). An SSS is unforgeable, if for any ppt adversary A there exists a negligible
function ν such that Pr[UnforgeabilitySSS

A (λ) = 1] ≤ ν(λ) , where the corresponding experiment is defined in
Fig. 4.
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Experiment UnforgeabilitySSS
A (λ)

ppsss ← SSSPGen(1λ)
(sksig, pksig)← KGensig(ppsss)
(sksan, pksan)← KGensan(ppsss)
(m∗, σ∗)← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan)

Proof(sksig,·,·,·,·)
(pksig, pksan)

for i = 1, 2, . . . , q let (mi, pksan,i,ADMi) and σi
index the queries/answers to/from Sign

for j = 1, 2, . . . , q′ let (mj , σj , pksig,j ,MODj) and (m′j , σ′j)
index the queries/answers to/from Sanit

return 1, if Verify(m∗, σ∗, pksig, pksan) = true ∧
∀i ∈ {1, 2, . . . , q} : (pksan,m

∗, σ∗) 6= (pksan,i,mi, σi) ∧
∀j ∈ {1, 2, . . . , q′} : (pksig,m

∗, σ∗) 6= (pksig,j ,m
′
j , σ
′
j)

return 0
Fig. 4: SSS Unforgeability

Experiment ImmutabilitySSS
A (λ)

ppsss ← SSSPGen(1λ)
(sksig, pksig)← KGensig(ppsss)
(m∗, σ∗, pk∗)← ASign(·,sksig,·,·),Proof(sksig,·,·,·,·)(pksig)

for i = 1, 2, . . . , q let (mi, pksan,i,ADMi)
index the queries to Sign

return 1, if Verify(m∗, σ∗, pksig, pk∗) = true ∧
(∀i ∈ {1, 2, . . . , q} : pk∗ 6= pksan,i ∨
m∗ /∈ {MOD(mi) | MOD with MOD(ADMi) = true})

return 0
Fig. 5: SSS Immutability

Immutability. A sanitizer must only be able to sanitize the admissible blocks defined by ADM. This also
prohibits deleting, or appending, blocks from a given message m. The adversary is given full oracle access,
while it is also allowed to generate the sanitizer key pair itself.

Definition 14 (Immutability). An SSS is immutable, if for any ppt adversary A there exists a negligible
function ν such that Pr[ImmutabilitySSS

A (λ) = 1] ≤ ν(λ) , where the corresponding experiment is defined in
Fig. 5.

Privacy. The notion of privacy is related to the indistinguishability of ciphertexts. The adversary is allowed
to input two messages with the same ADM which are sanitized to the exact same message. The adversary
then has to decide which of the input messages was used to generate the sanitized one. The adversary receives
full adaptive oracle access. Note, the adversary never receives un-sanitized signatures from the LoRSanit oracle,
and can thus never query them to the Proof oracle. Thus, no proofs for those signatures are generated.

Definition 15 (Privacy). An SSS is private, if for any ppt adversary A there exists a negligible function ν

such that
∣∣∣Pr[PrivacySSS

A (λ) = 1]− 1
2

∣∣∣ ≤ ν(λ) , where the corresponding experiment is defined in Fig. 6.

Transparency. Transparency guarantees that the accountable party of a message m remains anonymous.
This is important if discrimination may follow [3, 10]. In a nutshell, the adversary has to decide whether it
sees a freshly computed signature, or a sanitized one. The adversary has full (but proof-restricted) adaptive
oracle access. We stress that we use the proof-restricted version by Camenisch et al. [15].

Definition 16 ((Proof-Restricted) Transparency). An SSS is proof-restricted transparent, if for any ppt
adversary A there exists a negligible function ν such that

∣∣∣Pr[TransparencySSS
A (λ) = 1]− 1

2

∣∣∣ ≤ ν(λ) , where the
corresponding experiment is defined in Fig. 7.

From now on, we use the term “transparency”, even if we mean proof-restricted transparency.

Strong Signer-Accountability. For strong signer-accountability, a signer must not be able to blame a
sanitizer if the sanitizer is actually not responsible for a given message/signature pair. Hence, the adversary
A has to generate a proof π∗ which makes Judge to decide that the sanitizer is accountable, if it is not for
a message/signature pair (m∗, σ∗) output by A. Here, the adversary gains access to all oracles related to
sanitizing. This definition does take the signature into account.

Definition 17 (Strong Signer-Accountability). An SSS is strongly signer-accountable, if for any ppt
adversary A there exists a negligible function ν such that Pr[SSig-AccountabilitySSS

A (λ) = 1] ≤ ν(λ) , where the
experiment is defined in Fig. 8.
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Experiment PrivacySSS
A (λ)

ppsss ← SSSPGen(1λ)
(sksig, pksig)← KGensig(ppsss)
(sksan, pksan)← KGensan(ppsss)
b← {0, 1}
a← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan),Proof(sksig,·,·,·,·)

LoRSanit(·,·,·,·,·,sksig,sksan,b) (pksig, pksan)
where oracle LoRSanit on input of
m0,m1,MOD0,MOD1,ADM, sksig, sksan, b
return ⊥, if MOD0(m0) 6= MOD1(m1) ∨

ADM(m0) 6= ADM(m1)
let σ ← Sign(mb, sksig, pksan,ADM)
return (m′, σ′)← Sanit(mb,MODb, σ, pksig, sksan)

return 1, if a = b
return 0

Fig. 6: SSS Privacy

Experiment TransparencySSS
A (λ)

ppsss ← SSSPGen(1λ)
(sksig, pksig)← KGensig(ppsss)
(sksan, pksan)← KGensan(ppsss)
b← {0, 1}
Q ← ∅
a← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan),Proof′(sksig,·,·,·,·)

Sanit/Sign(·,·,·,sksig,sksan,b) (pksig, pksan)
where oracle Proof′ on input of

sksig,m, σ, {(mi, σi) | i ∈ N}, pk′san, b:
return ⊥, if pk′san = pksan ∧ (m,σ) ∈ Q
return Proof(sksig,m, σ, {(mi, σi) | i ∈ N}, pk′san)

where oracle Sanit/Sign on input of
m,MOD,ADM, sksig, sksan, b:
σ ← Sign(m, sksig, pksan,ADM)
(m′, σ′)← Sanit(m,MOD, σ, pksig, sksan)
if b = 1:
σ′ ← Sign(m′, sksig, pksan,ADM)

If σ′ 6= ⊥, set Q ← Q∪ {(m′, σ′)}
return (m′, σ′)

return 1, if a = b
return 0
Fig. 7: SSS (Proof-Restricted) Transparency

Experiment SSig-AccountabilitySSS
A (λ)

ppsss ← SSSPGen(1λ)
(sksan, pksan)← KGensan(ppsss)
(pk∗, π∗,m∗, σ∗)← ASanit(·,·,·,·,sksan)(pksan)

for i = 1, 2, . . . , q let (m′i, σ′i) and (mi,MODi, σi, pksig,i)
index the answers/queries from/to Sanit

return 1, if Verify(m∗, σ∗, pk∗, pksan) = true ∧
∀i ∈ {1, 2, . . . , q} : (pk∗,m∗, σ∗) 6= (pksig,i,m

′
i, σ
′
i) ∧

Judge(m∗, σ∗, pk∗, pksan, π
∗) = San

return 0
Fig. 8: SSS Strong Signer-Accountability

Experiment San-AccountabilitySSS
A (λ)

ppsss ← SSSPGen(1λ)
(sksig, pksig)← KGensig(ppsss)
(m∗, σ∗, pk∗)← ASign(·,sksig,·,·),Proof(sksig,·,·,·,·)(pksig)

for i = 1, 2, . . . , q let (mi,ADMi, pksan,i) and σi
index the queries/answers to/from Sign

π ← Proof(sksig,m
∗, σ∗, {(mi, σi) | 0 < i ≤ q}, pk∗)

return 1, if Verify(m∗, σ∗, pksig, pk∗) = true ∧
∀i ∈ {1, 2, . . . , q} : (pk∗,m∗, σ∗) 6= (pksan,i,mi, σi) ∧
Judge(m∗, σ∗, pksig, pk∗, π) = Sig

return 0
Fig. 9: SSS Sanitizer Accountability

Sanitizer-Accountability. Sanitizer-accountability requires that the sanitizer cannot blame the signer for a
message/signature pair not created by the signer. In particular, the adversary has to make Proof generate a
proof π which makes Judge decide that for a given (m∗, σ∗) generated by A the signer is accountable, while it
is not. Thus, the adversary A gains access to all signer-related oracles.

Definition 18 (Sanitizer-Accountability). An SSS is sanitizer-accountable, if for any ppt adversary A
there exists a negligible function ν such that Pr[San-AccountabilitySSS

A (λ) = 1] ≤ ν(λ) , where the experiment is
defined in Fig. 9.

As Camenisch et al. [15], we do not consider unlinkability [12, 14, 30, 41] in our construction, as it seems to
be very hard to achieve with the underlying construction paradigm.

3.3 Strong Invisibility of SSSs

Subsequently, we introduce the property of strong invisibility. The definition is derived from the one given by
Camenisch et al. [15], but allows queries to the sanitization oracle with all adversarially chosen public keys.

In a nutshell, the adversary can query an LoRADM oracle which either makes ADM0 or ADM1 admissible
in the final signature. Of course, the adversary has to be restricted to ADM0 ∩ADM1 for sanitization requests
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Experiment SInvisibilitySSS
A (λ)

ppsss ← SSSPGen(1λ)
(sksig, pksig)← KGensig(ppsss)
(sksan, pksan)← KGensan(ppsss)
b← {0, 1}
Q ← ∅
a← ASanit′(·,·,·,·,sksan),Proof(sksig,·,·,·,·),LoRADM(·,·,·,·,sksig,b)(pksig, pksan)

where oracle LoRADM on input of m,ADM0,ADM1, pk′san, sksig, b:
return ⊥, if ADM0(m) 6= ADM1(m)
return ⊥, if pksan 6= pk′san ∧ ADM0 6= ADM1
let σ ← Sign(m, sksig, pksan,ADMb)
if pk′san = pksan, let Q ← Q∪ {(m,σ,ADM0 ∩ADM1)}
return σ

where oracle Sanit′ on input of m,MOD, σ, pk′sig, sksan:
return ⊥, if pk′sig = pksig ∧ @(m,σ,ADM) ∈ Q : MOD(ADM) = true
let (m′, σ′)← Sanit(m,MOD, σ, pk′sig, sksan)
if pk′sig = pksig ∧ ∃(m,σ,ADM′) ∈ Q : MOD(ADM′) = true,

let Q ← Q∪ {(m′, σ′,ADM′)}
return (m′, σ′)

return 1, if a = b
return 0

Fig. 10: SSS Strong Invisibility

for signatures originating from those created by LoRADM, and their derivatives, to avoid trivial attacks with
the challenge key. However, compared to the original definition, we do not restrict that the signer public key
is the challenge one. Moreover, as in the original definition, the sign oracle can be simulated by querying the
LoRADM oracle with ADM0 = ADM1.

Definition 19 (Strong Invisibility). An SSS is strongly invisible, if for any ppt adversary A there exists a
negligible function ν such that

∣∣∣Pr[SInvisibilitySSS
A (λ) = 1]− 1

2

∣∣∣ ≤ ν(λ) , where the corresponding experiment is
defined in Fig. 10.

Clearly, our definition implies the invisibility definition by Camenisch et al. [15], and strong invisibility is not
implied by any other property.

Definition 20 (Secure SSS). We call an SSS secure, if it is correct, private, unforgeable, immutable,
sanitizer-accountable, strongly signer-accountable, and strongly invisible.

As mentioned before, we do not consider non-interactive public accountability, unlinkability, or transparency,
as essential requirements, as it depends on the concrete use-case whether these properties are required.

3.4 Construction

Our construction is similar to the one by Camenisch et al. [15]9 but contains several improvements. In their
paradigm, each block is protected by a chameleon-hash with ephemeral trapdoors under the sanitizer’s key,
while the hash values are signed by the signer. Then the ephemeral trapdoors for the modifiable blocks
are revealed to the sanitizer, who can modify those blocks by computing collisions. Our trick is to mimic
chameleon hashes with ephemeral trapdoors by generating a fresh chameleon hash key pair for each block,
while only the overall message is protected by a chameleon hash under the sanitizer’s key. Then we give the
secret keys skich for which the respective block m[i] is admissible to the sanitizer while the public keys pkich are
included in the signature by the signer. To hide whether a given block is sanitizable, each skich is encrypted;

9 Which, in turn, is based on prior work [10, 34, 43].
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a sanitizable block contains the real skich, while a non-admissible block encrypts a 0 (0 is assumed to be an
invalid skich). To prohibit the re-use of ciphertexts from different pksigs, which is exactly the thin line between
invisibility and strong invisibility, the signer also needs to put its public key pksig into the label for each
ciphertext. As we show in the proof, this then allows to simulate decryption for all requests when using labeled
CCA2-secure encryption. To achieve accountability, as Camenisch et al. [15], we generate additional “tags”
for a chameleon-hash (which binds everything together) in a special way, i.e., using PRFs and PRGs. This
idea can essentially be tracked back to Brzuska et al. [10]. To achieve strong signer-accountability, we need to
resort to unique signature schemes, and generate the randomness of the chameleon hash (one can use the one
given in Sect. 2) in a special way. Namely, we use the unique signature scheme to sign a random value. The
resulting signature is hashed, and used as a randomness source for the outer chameleon-hash. To maintain
transparency, the signature is encrypted to the sanitizer, who verifies that the signature is correct upon
every sanitization, and does not produce sanitized signatures otherwise. This is necessary, as the definition
of CH collision-resistance (see Fig. 2) does not rule out that the adversary can find new colliding hashes for
already seen collisions. Our trick prohibits such attacks. In more detail, the proof π needs to also contain
the randomness used to generate the chameleon-hash, which is exactly the hashed signature on a public
random value. The new construction is given in Construction 2, where H : {0, 1}∗ → {0, 1}λ denotes a random
oracle [7].

Theorem 1 (proven in App. B). If Π, Σ, and CH, are secure, while PRF, and PRG, are pseudo-random,
Construction 2 is a secure, and transparent, SSS.

4 Evaluation

To demonstrate the practicality of our scheme, we have implemented our construction in Java. The chameleon-
hash CH we implemented is the one presented in Sect. 2. All RSA-moduli for Σ and CH have a fixed bit-length
of 2,048 Bit (with balanced primes). Likewise, each e generated (one for Σ, and one for CH) has 2,050 Bit. Σ is
a standard RSA-FDH implementation, with the required constraints. We have fixed the output size of H, PRF,
and PRG, to 512 and 2 · 512, respectively, as these sizes turned out to yield the best performance when using
2,048 Bit moduli. H, and PRF, were implemented using SHA-512. Hn is SHA-512 in counter-mode [7], similar
to what is used in existing implementations [16, 31]. Π was implemented using the IND-CCA2-secure version
of RSA-OAEP (2,048 Bit modulus), paired with a symmetric encrypt-then-MAC cipher-suite (AES/3DES-
CBC-MAC). These implementations were taken from the SCAPI-framework [28]. They use 128 Bit encryption
keys, and 112 Bit MAC keys.

The measurements were performed on a Lenovo W530 with an Intel i7-3470QM@2.70Ghz, and 16GiB
of RAM. No performance optimization such as CRT were implemented, and only a single thread does
the computations. This was done to see the actual lower bound of our construction, i.e., any additional
optimization helps. We evaluated our implementation with 32 blocks, wheres 50% were marked as admissible.
For sanitization, 50% of the admissible blocks were sanitized, i.e., 8 blocks. We omitted proof generation,
and the judge, as they are simple database look-ups, paired with comparisons, and depend on the number of
signatures generated. The overall results are depicted in Fig. 11a, and Tab. 11b and are based on 200 runs.
Parameter generation is also omitted, as this is a one-time setup, i.e., drawing a random prime with 2,050 Bit.
As demonstrated, signing is the most expensive operation. The lion’s share is finding suitable primes; the
exponentiations within the algorithms only have a negligible overhead, as seen by the runtime of sanitization,
and verification. A practical optimization would therefore be to generate the generated keys in advance, when
no other computation is done, or even in parallel. However, even without these optimization the runtime can
be considered practical, also with decent security parameters, and rather expensive RSA-based primitives.
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SSSPGen(1λ): Let ppch ← CHPGen(1λ). Return ppsss = ppch.
KGensig(ppsss): Let (pkΣ , skΣ)← KGenΣ(1λ), κ← KGenprf(1λ), and return ((κ, skΣ), pkΣ).
KGensan(ppsss): Let (skch, pkch)← CHKGen(ppsss), (skΠ , pkΠ)← KGenΠ(1λ), and return ((skch, skΠ), (pkch, pkΠ)).
Sign(m, sksig, pksan,ADM): If ADM(m) 6= true, return ⊥. Let x0 ← {0, 1}λ, x′0 ← Evalprf(κ, x0), τ ← Evalprg(x′0), x1 ← {0, 1}λ.

Further, let
∀ i ∈ {1, . . . , `} : (skich, pkich)← CHKGen(ppch), (hi, ri)← CHash(pkich, (i,m[i], pksig)),
∀ j /∈ ADM : skjch ← 0, and ∀ i ∈ {1, . . . , `} : ci ← EncΠ(pkΠ , skich, pksig).

Return σ = (σ′, x0, x1, [pkch]1,`, [r]0,`, τ, ch, [c]1,`, [h]0,`), where

σh ← SignΣ(skΣ , x1), ch ← EncΠ(pkΠ , (m,σh, [r]1,`, τ), pksig), t← H(σh, x1, pksig),
(h0, r0)← CHash(pkch, (0, x0, x1, [pkch]1,`,m, τ, `, [h]1,`, ch, [c]1,`, [r]1,`, pksig); t),
σ′ ← SignΣ(skΣ , (x0, x1, [pkch]1,`, [h]0,`, [c]1,`, pksan, pksig, `))

Verify(m,σ, pksig, pksan): Return true if all of the following checks hold, and false otherwise:

∀i ∈ {1, . . . , `} : CHCheck(pkich, (i,m[i], pksig), ri, hi) = true ∧
CHCheck(pkch, (0, x0, x1, [pkch]1,`,m, τ, `, [h]1,`, ch, [c]1,`, [r]1,`, pksig), r0, h0) = true ∧
VerifyΣ(pkΣ , (x0, x1, [pkch]1,`, [h]0,`, ch, [c]1,`, pksan, pksig, `), σ′) = true.

Sanit(m,MOD, σ, pksig, sksan): Return ⊥ if Verify(m,σ, pksig, pksan) 6= true. Let (mo, σh, [r]o1,`, τ o) ← DecΠ(skΠ , ch, pksig), check
whether VerifyΣ(pkΣ , x1, σh) 6= true, and return ⊥ if so. Further, obtain (hv0 , ·) ← CHash(pkch, (0, x0, x1, [pkch]1,`,mo, τ o, `,
[h]1,`, ch, [c]1,`, [r]o1,`, pksig);H(σh, x1, pksig)) and return ⊥ if hv0 6= h0. Otherwise, obtain

∀ i ∈ {1, . . . , `} : skich ← DecΠ(skΠ , ci, pksig) and return ⊥ if skich = ⊥ ∨ (m[i]′ ∈ MOD ∧ skich = 0).

For each block m[i]′ ∈ MOD, let r′i ← CHAdapt(skich, (i,m[i], pksig), (i,m[i]′, pksig), ri, hi). If any r′i = ⊥, return ⊥. For each
block m[i]′ /∈ MOD, let r′i ← ri. Let m′ ← MOD(m). Draw τ ′ ← {0, 1}2λ. Let

r′0 ← CHAdapt(skch,(0, x0, x1, [pkch]1,`,m, τ, `, [h]1,`, ch, [c]1,`, [r]1,`, pksig),
(0, x0, x1, [pkch]1,`,m′, τ ′, `, [h]1,`, ch, [c]1,`, [r′]1,`, pksig), r0, h0).

Finally, return (m′, (σ′, x0, x1, [pkch]1,`, [r′]0,`, τ ′, ch, [c]1,`, [h]0,`)).
Proof(sksig,m, σ, {(mi, σi) | i ∈ N}, pksan): If any of the following checks holds return ⊥:

Verify(m,σ, pksig, pksan) = false ∨ ∃ i ∈ {1, . . . , `} : Verify(mi, σi, pksig, pksan) = false

Otherwise, go through the list of (mi, σi) and find a (non-trivial) colliding tuple of the chameleon-hash with (m,σ), i.e., where
it holds that

h0 = h′0 ∧ true = CHCheck(pkch, (0, x0, x1, [pkch]1,`,m, τ, `, [h]1,`, ch, [c]1,`, [r]1,`, pksig), r0, h0) ∧
true = CHCheck(pkch, (0, x0, x1, [pkch]1,`,m′, τ ′, `, [h′]1,`, c′h, [c′]1,`, [r′]1,`, pksig), r′0, h′0) ∧
(τ 6= τ ′ ∨ m 6= m′).

Let this signature/message pair be (σ′,m′) ∈ {(mi, σi) | i ∈ N}. Return π = ((σ′,m′),Evalprf(κ, x0), SignΣ(skΣ , x1)), where
x0, and x1, are contained in (σ′,m′).

Judge(m,σ, pksig, pksan, π): Parse π as ((σ′,m′), v, σh) with v ∈ {0, 1}λ, and return Sig on failure. Return Sig if any of the following
checks hold

false = Verify(m′, σ′, pksig, pksan) ∨ false = Verify(m,σ, pksig, pksan) ∨
VerifyΣ(pkΣ , x1, σh) = false ∨ Evalprg(v) 6= τ ′.

With t′ ← H(σh, x1, pksig), (ht, rt)← CHash(pkch, (0, x0, x1, [pkch]1,`,m′, τ ′, `, [h]1,`, ch, [c]1,`, [r′]1,`, pksig); t′), return San if we
have a non-trivial collision satisfying the following checks, and Sig otherwise:

h0 = h′0 = ht ∧ rt = r0 ∧ true = CHCheck(pkch, (0, x0, x1, [pkch]1,`,m, τ, `, [h]1,`, [c]1,`, pksig), r0, h0) ∧
true = CHCheck(pk′ch, (0, x′0, x′1, [pk′ch]1,`′ ,m′, τ ′, `′, [h′]1,`′ , c′h, [c′]1,`′ , pksig), r′0, h′0) ∧ [c]1,` = [c′]1,`′ ∧
x0 = x′0 ∧ x1 = x′1 ∧ ` = `′ ∧ [pkch]1,` = [pk′ch]1,`′ ∧ [h]0,` = [h′]0,`′ .

Construction 2: Secure and transparent SSS
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(a) Box-plots of the run-times in ms

KGensig KGensan Sign Sanit Verify
Min.: 200 285 6’443 1’868 714

25th PCTL: 725 383 7’718 1’907 731
Median: 1’393 468 8’243 1’946 746

75th PCTL: 2’726 547 8’860 2’006 774
90th PCTL: 4’563 667 9’733 2’161 826
95th PCTL: 5’619 782 10’050 2’317 874

Max.: 8’023 1’018 11’327 3’151 998
Average: 2’017 487 8’367 2’002 764

SD: 1’690 139 914 183 52
(b) Percentiles for our implementation in ms

Fig. 11: Performance Evaluation Results

5 Conclusion

We have strengthened the current invisibility definition of sanitizable signatures. Namely, the adversary is
now able to query arbitrary keys to the sanitization oracle. We have shown that prohibiting this may lead to
serious problems in real-life scenarios. Moreover, we have presented a simplified construction of a strongly
invisible, and transparent, sanitizable signature scheme, which is also strongly signer-accountable. That is,
we even exclude malleability of the signatures. Our construction is also simpler than the construction given
by Camenisch et al. [15], as it does not require chameleon hashes with ephemeral trapdoors, i.e., it only
requires standard primitives, which are less costly. Our corresponding evaluation shows that this primitive can
be considered practical. Still, it remains an open problem how to construct SSSs which are simultaneously
unlinkable, and invisible.
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43. de Meer, H., Pöhls, H.C., Posegga, J., Samelin, K.: Scope of security properties of sanitizable signatures revisited. In: ARES.

pp. 188–197 (2013)
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Experiment UniquenessΣA(λ)
(pk∗,m∗, σ∗, σ′∗)← A(1λ)
return 1, if VerifyΣ(pk∗,m∗, σ∗) = true ∧ VerifyΣ(pk∗,m∗, σ′∗) = true ∧ σ∗ 6= σ′∗

return 0
Fig. 12: Σ Uniqueness
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48. Pöhls, H.C., Samelin, K.: Accountable redactable signatures. In: ARES. pp. 60–69 (2015)
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A Security Definitions Building Blocks

This appendix presents the security and correctness definitions required for our construction.

A.1 Digital Signatures Σ

Correctness. For a signature scheme Σ we require the correctness properties to hold. In particular, we require
that for all λ ∈ N, for all (skΣ , pkΣ)← KGenΣ(1λ), for all m ∈M we have VerifyΣ(pkΣ ,m,SignΣ(skΣ ,m)) =
true. This definition captures perfect correctness.

Strong Unforgeability. Now, we define strong unforgeability of digital signature schemes, as given by An
et al. [2]. In a nutshell, we require that an adversary A cannot (except with negligible probability) come up
with any new valid signature σ∗ for a message m∗. Moreover, the adversary A can adaptively query for new
signatures.

Definition 21 (Strong Unforgeability). A signature scheme Σ is strongly unforgeable, if for any ppt
adversary A there exists a negligible function ν such that Pr[seUNF-CMAΣA(1λ) = 1] ≤ ν(λ). The corresponding
experiment is depicted in Fig. 13.

Uniqueness. Now, we define a computational variant of uniqueness of digital signature schemes [42], derived
from Dodis et al., and Micali et al. [27, 45]. In a nutshell, we require that an adversary A cannot (except with
negligible probability) come up with two distinct signatures for some adversarially chosen message, even it
can choose the public key itself.

Definition 22 (Uniqueness). A signature scheme Σ is unique, if for any ppt adversary A there exists a
negligible function ν such that Pr[UniquenessΣA(1λ) = 1] ≤ ν(λ). The corresponding experiment is depicted in
Fig. 12.

A.2 Labeled Public-Key Encryption Schemes Π

Correctness. For a public-key encryption scheme Π we require the correctness properties to hold. In
particular, we require that for all λ ∈ N, for all (skΠ , pkΠ)← KGenΠ(1λ), for all m ∈M, for all ϑ ∈ {0, 1}∗,
we have DecΠ(skΠ ,EncΠ(pkΠ ,m, ϑ), ϑ) = m. This definition captures perfect correctness.
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Experiment seUNF-CMAΣA(λ)
(skΣ , pkΣ)← KGenΣ(1λ)
Q ← ∅
(m∗, σ∗)← ASign′

Σ(skΣ ,·)(pkΣ)
where oracle Sign′Σ on input m:

let σ ← SignΣ(skΣ ,m)
set Q ← Q∪ {(m,σ)}
return σ

return 1, if VerifyΣ(pkΣ ,m∗, σ∗) = true ∧ (m∗, σ∗) /∈ Q
return 0

Fig. 13: Σ Strong Unforgeability

Experiment IND-CCA2ΠA(λ)
(skΠ , pkΠ)← KGenΠ(1λ)
b← {0, 1}
(m0,m1, ϑ, stateA)← ADecΠ (skΠ ,·,·)(pkΠ)
if m0 /∈M ∨ m1 /∈M, let c← ⊥
else, let c← EncΠ(pkΠ ,mb, ϑ)
a← ADec′

Π (skΠ ,·,·)(c, stateA)
where oracle Dec′Π(skΠ , ·, ·) behaves as DecΠ ,

but returns ⊥ if queried with (c, ϑ).
return 1, if a = b
return 0

Fig. 14: Π Labeled IND-CCA2-Security

Experiment Pseudo-RandomnessPRF
A (λ)

κ← KGenprf(1λ)
b← {0, 1}
f ← Fλ

a← AEval′prf (κ,·)(1λ)
where oracle Eval′prf on input κ, x:

return ⊥, if x /∈ {0, 1}λ
if b = 0, return Evalprf(κ, x)
return f(x)

return 1, if a = b
return 0

Fig. 15: PRF Pseudo-Randomness

Experiment Pseudo-RandomnessPRG
A (λ)

b← {0, 1}
if b = 0, let v ← {0, 1}2λ

else, let x← {0, 1}λ, and v ← Evalprg(x)
a← A(v)
return 1, if a = b
return 0

Fig. 16: PRG Pseudo-Randomness

Labeled IND-CCA2-Security. Labeled IND-CCA2-Security requires that an adversary A cannot decide
which message is actually contained in a ciphertext c, while A receives full adaptive access to the decryption
oracle. We also require that the message spaceM implicitly define an upper bound on the message length, i.e.,
|m|. In other words, this means that the length is implicitly hidden for all messages in M. From a practical
viewpoint, this can be implemented using suitable padding techniques.

Definition 23 (Labeled IND-CCA2 Security). A labeled encryption scheme Π is IND-CCA2-secure,
if for any ppt A there exists a negligible function ν such that

∣∣∣Pr[IND-CCA2ΠA (1λ) = 1]− 1
2

∣∣∣ ≤ ν(λ). The
corresponding experiment is depicted in Fig. 14.

A.3 PRF Pseudo-Randomness.

In the definition, let Fλ = {f : {0, 1}λ → {0, 1}λ} be the set of all functions mapping a value x ∈ {0, 1}λ to a
value v ∈ {0, 1}λ.

Definition 24 (Pseudo-Randomness). A pseudo-random function PRF is pseudo-random, if for any ppt
adversary A there exists a negligible function ν such that

∣∣ Pr[Pseudo-RandomnessPRF
A (1λ) = 1] − 1

2
∣∣ ≤ ν(λ).

The corresponding experiment is depicted in Fig. 15.

A.4 PRG Pseudo-Randomness.

We require that PRG is actually pseudo-random.

Definition 25 (Pseudo-Randomness). A pseudo-random number-generator PRG is pseudo-random, if for
any ppt adversary A there exists a negligible function ν such that

∣∣ Pr[Pseudo-RandomnessPRG
A (1λ) = 1]− 1

2
∣∣ ≤

ν(λ). The corresponding experiment is depicted in Fig. 16.
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B Proof of Theorem 1

Now, we prove the security of Construction 2.

Proof. Correctness follows by inspection. We now prove each property on its own.

Unforgeability. To prove that our scheme is unforgeable, we use a sequence of games:

Game 0: The original unforgeability game.
Game 1: As Game 0, but we abort if the adversary outputs a forgery (m∗, σ∗) with σ∗ = (σ′∗, x∗0, x∗1, [pk∗ch]1,`∗ ,

[r∗]0,`∗ , τ∗, c∗h, [c∗]1,`∗ , [h∗]0,`∗), where (σ′∗, (x∗0, x∗1, [pk∗ch]1,`∗ , [h∗]0,`∗ , c∗h, [c∗]1,`∗ , pk∗san, pk∗sig, `∗)) was never
obtained from the signing oracle. Let this event be E1.

Transition - Game 0 → Game 1: Clearly, if the tuple (σ′∗, (x∗0, x∗1, [pk∗ch]1,`∗ , [h∗]0,`∗ , c∗h, [c∗]1,`∗ , pk∗san, pk∗sig, `∗))
was never obtained by the challenger, this tuple breaks the strong unforgeability of the underlying signature
scheme. The reduction works as follows. We obtain a challenge public key pkc from a strong unforgeability
challenger and embed it as pksig. For every required “inner” signature σ′ (and σh), we use the signing oracle
provided by the challenger. Now, whenever E1 happens, we can output σ′∗ together with the message
protected by σ′∗ as a forgery to the challenger. That is, E1 happens with exactly the same probability as a
forgery. Further, both games proceed identically, unless E1 happens. Taking everything together yields
|Pr[S0]− Pr[S1]| ≤ νseunf-cma(λ).

Game 2: Among others, we now have established that the adversary can no longer win by modifying pksig,
and pksan. We proceed as in Game 1, but abort if the adversary outputs a forgery (m∗, σ∗), where message
m∗ or any of the other values protected by the outer chameleon-hash were never returned by the signer or
the sanitizer oracle. Let this event be E2.

Transition - Game 1 → Game 2: The probability of the abort event E2 to happen is exactly the probability
of the adversary breaking collision freeness for the outer chameleon-hash. Namely, we already establis-
hed that the adversary cannot tamper with the inner signature, and therefore the hash value h∗0 must
be from a previous oracle query. Now, assume that we obtain pkc from a collision freeness challenger.
If E2 happens, there must be a previous oracle query with associated values (0, x0, x1, [pkch]1,`,m, τ,
`, [h]1,`, ch, [c]1,`, [r]1,`, pksig) and r0 so that h∗0 is a valid hash with respect to some those values and
r0. Further, we also have that (0, x0, x1, [pkch]1,`,m, τ, `, [h]1,`, ch, [c]1,`, [r]1,`, pksig) 6= (0, x′0, x′1, [pk′ch]1,`′ ,
m′, τ ′, `′, [h′]1,`′ , c′h, [c′]1,`′ , [r′]1,`′ , pksig), and can thus output ((0, x0, x1, [pkch]1,`,m, τ, `, [h]1,`, ch, [c]1,`, [r]1,`,
pksig), r∗0, (0, x′0, x′1, [pk′ch]1,`′ ,m′, τ ′, `′, [h′]1,`′ , c′h, [c′]1,`′ , [r′]1,`′ , pksig), r′∗0 , h∗0) as the collision. Thus, the pro-
bability that E2 happens is exactly the probability of a collision for the chameleon-hash. Both games
proceed identically, unless E2 happens. |Pr[S1]− Pr[S2]| ≤ νch-coll-res(λ) follows.

Game 3: As Game 2, but we abort if the adversary outputs a forgery where only the randomness r0 changed,
i.e., we have previously generated a signature with respect to r0 so that r0 6= r∗0. Let this be event be E3.

Transition - Game 2 → Game 3: If the abort event E3 happens, the adversary breaks uniqueness of the
chameleon-hash. In particular we have values (0, x0, x1, [pkch]1,`,m, τ, `, [h]1,`, ch, [c]1,`, [r]1,`, pksig) in the
forgery which also correspond to some previous query, but r0 from the previous query is different from r∗0.
Obtaining ppch from a uniqueness challenger thus shows that E3 happens with exactly the same probability
as the adversary breaks uniqueness of the chameleon hash. Thus, we have that |Pr[S2] − Pr[S3]| ≤
νch-unique(λ).

Now, the adversary can no longer win the unforgeability game; this game is computationally indistinguishable
from the original game, which concludes the proof.

Immutability. We prove immutability using a sequence of games.

Game 0: The immutability game.
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Game 1: As Game 0, but we abort if the adversary outputs a forgery (m∗, σ∗) with σ∗ = (σ′∗, x∗0, x∗1,
[pk∗ch]1,`∗ , [r∗]0,`∗ , τ∗, c∗h, [c∗]1,`∗ , [h∗]0,`∗) where (σ′∗, (x∗0, x∗1, [pk∗ch]1,`∗ , [h∗]0,`∗ , c∗h, [c∗]1,`∗ , pk∗san, pk∗sig, `∗)) was
never obtained from the sign oracle.

Transition - Game 0 → Game 1: Let us use E1 to refer to the abort event. Clearly, if (σ′∗, (x∗0, x∗1, [pk∗ch]1,`∗ ,
[h∗]0,`∗ , c∗h, [c∗]1,`∗ , pk∗san, pk∗sig, `∗) was never generated by the challenger, this tuple breaks the strong
unforgeability of the underlying signature scheme. The reduction works as follows. We obtain a challenge
public key pkc from a strong unforgeability challenger and embed it as pksig. For every required “inner”
signature σ′ (and σh), we use the signing oracle provided by the challenger. Now, whenever E1 happens, we
can output σ′∗ together with the message protected by σ′∗ as a forgery to the challenger. That is, E1 happens
with exactly the same probability as a forgery of the underlying signature scheme. Further, both games
proceed identically, unless E1 happens. Taking everything together yields |Pr[S0]− Pr[S1]| ≤ νseunf-cma(λ).

Game 2: As Game 1, but the challenger aborts, if the message m∗ is not derivable from any returned
signature. Let this event be denoted E2. Note, we already know that tampering with the signatures is not
possible, and thus pksig, and pksan, are fixed. The same is true for deleting or appending blocks, as ` is
signed in every case.

Transition - Game 1 → Game 2: Now assume that E2 is non-negligible. We can then construct an adversary
B which breaks the collision-resistance of the underlying chameleon-hash. Let the signature returned be
σ∗ = (σ′∗, x∗0, x∗1, [pk∗ch]1,`∗ , [r∗]0,`∗ , τ∗, c∗h, [c∗]1,`∗ , [h∗]0,`∗), while A’s public key is pk∗. Due to prior game
hops, we know that A cannot tamper with the “inner” signatures, and all hashes are signed. Thus, there
must exists another signature σ′′∗ = (σ′′′∗, x′∗0 , x′∗1 , [pk′∗ch]1,`′∗ , [r′∗]0,`′∗ , τ ′∗, c′∗h , [c′∗]1,`′∗ , [h′∗]0,`′∗) returned by
the signing oracle. This, however, also implies that there must exists an index i ∈ {1, 2, . . . , `∗} (as `∗ = `′∗),
for which we have CHCheck(pkch, (i,m∗[i], pksig), r∗i , h∗i ) = CHCheck(pkch, (i,m′∗[i], pksig), r′∗i , h∗i ) = true,
where m∗[i] 6= m′∗[i] by assumption. For the reduction, B proceeds as follows. Let qh be the number of
“inner hashes” created. Draw an index i← {1, 2, . . . , qh}. For a query i 6= j, proceed as in the algorithms. If
i = j, however, B returns the challenge public key pkc for the chameleon-hash. Note, the ciphertexts can be
honestly generated. B then receives back control, and queries its CHash oracle with (i,m[i], pksig), where i is
the current index of block of the message m to be signed. Then, if ((i,m∗[i], pksig), r∗i , (i,m′∗[i], pksig), r′∗i , h∗i )
is the collision w.r.t. pkc, it can directly return it. |Pr[S1]− Pr[S2]| ≤ qhνch-coll-res(λ) follows, as B has to
guess where the collision will take place.

As each hop changes the view of the adversary only negligibly, immutability is proven, as the adversary has
no other way to break immutability in Game 2.

Privacy. We now prove privacy; we use a sequence of games. Note, the adversary never sees the non-sanitized
versions of the signature generated by LoRSanit. Thus, the Proof oracle cannot be queried to receive a proof π
for such signatures.

Game 0: The original privacy game.
Game 1: As Game 0, but we abort if the adversary queries a verifying message-signature pair (m∗, σ∗) which

was never returned by the signer, or the sanitizer, oracle, to the sanitization, or proof generation, oracle.
Transition - Game 0 → Game 1: Let us use E1 to refer to the abort event. Clearly, whenever the adversary

queries such a new pair, we can output it to break the unforgeability of our scheme, as this tuple is fresh.
However, we have already proven that this can only happen with negligible probability. |Pr[S0]−Pr[S1]| ≤
νsss-unf(λ) follows.

Game 2: As Game 1, but all ch encrypt a 0 in the LoRSanit oracle. For sanitization of those signatures, the
values are stored, and then used without decrypting ch. However, the oracle still enforces the correct ADM.

Transition - Game 1 → Game 2: A standard reduction, using hybrids, shows that this hop is indistinguishable
by the IND-CCA2-Security of the encryption scheme used. |Pr[S1]−Pr[S2]| ≤ qhνind-cca2(λ) follows, where
qh is the number of generated ciphertexts by LoRSanit. Note, requests for other pksigs can simply be
decrypted using the decryption oracle provided.
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Game 3: As Game 2, but we abort if a x1 was drawn twice. Let this event be E3.
Transition - Game 2 → Game 3: As each x1 is drawn uniformly at randomly, event E3 only happens with

probability q2
t

2λ , where qt is the number of signature generation requests. |Pr[S2]− Pr[S3]| ≤ q2
t

2λ follows.
Game 4: As Game 3, but we no longer compute the signatures σh and choose t← {0, 1}λ when simulating

the LoRSanit oracle.
Transition - Game 3 → Game 4: We can construct an adversary B which breaks the strong unforgeability of

the signature scheme from a distinguisher between Game 3 and Game 4. In the first step, B takes over
control of the random oracle H, and simulates honestly, but records the queries. It then receives pkc as
the challenge key, which is embedded into pksig. Every required signature generation is delegated to the
signing oracle provided. However, as we have already ruled out collision for the x1, we must have a query
(x1, σh, pksig) where σh is valid, fresh signature on x1. |Pr[S3]− Pr[S4]| ≤ νseunf-cma(λ) follows.

Game 5: As Game 4, but instead of hashing the blocks (i,mb[i], pksig) for the inner chameleon-hashes using
CHash, and then CHAdapt to (i,m[i], pksig), we directly apply CHash to (i,m[i], pksig).

Transition - Game 4 → Game 5: Assume that the adversary can distinguish this hop. We can then construct
an adversary B which wins the indistinguishability game. B receives pkc as it’s own challenge, B embeds
pkc as one of the pkich (where m[i] is admissible). It proceeds honestly with the exception that it uses
the HashOrAdapt oracle to generate that inner hashes. Then, whatever A outputs, is also output by B.
|Pr[S4]−Pr[S5]| ≤ qhνch-ind(λ) follows, where qh is the number of admissible inner hashes due to a standard
hybrid argument.

Game 6: As Game 5, but instead of adapting (0, x0, x1, [pkch]1,`,m, τ, `, [h]1,`, [c]1,`, [r]1,`, pksig) to the new
values, we directly use CHash.

Transition - Game 5 → Game 6: Assume that the adversary can distinguish this hop. We can then construct
an B which wins the indistinguishability game. B receives pkc as it’s own challenge, B embeds pkc as pkch,
and proceeds honestly with the exception that it uses the HashOrAdapt oracle to generate the outer hashes.
Then, whatever A outputs, is also output by B. |Pr[S5]− Pr[S6]| ≤ νch-ind(λ) follows.

Clearly, we are now independent of the bit b. As each hop changes the view of the adversary only negligibly,
privacy is proven.

Transparency. We prove transparency by showing that the distributions of sanitized and fresh signatures are
indistinguishable. Note, the adversary is not allowed to query Proof for values generated by Sanit/Sign.

Game 0: The original transparency game with b = 0.
Game 1: As Game 0, but we abort if the adversary queries a valid message-signature pair (m∗, σ∗) which

was never returned by any of the calls to the sanitization or signature generation oracle. Let us use E1 to
refer to the abort event.

Transition - Game 0 → Game 1: Clearly, whenever the adversary queries such a new pair, we can output it
to break the unforgeability of our scheme, as this tuple is fresh. A reduction is straightforward. Thus, we
have |Pr[S0]− Pr[S1]| ≤ νsss-unf(λ).

Game 2: As Game 1, but instead of computing x′0 ← Evalprf(κ, x0), we set x′0 ← {0, 1}λ within every call to
Sign in the Sanit/Sign oracle.

Transition - Game 1 → Game 2: A distinguisher between these two games straightforwardly yields a distin-
guisher for the PRF. Thus, we have |Pr[S1]− Pr[S2]| ≤ νind-prf(λ).

Game 3: As Game 2, but instead of computing τ ← Evalprg(x′0) , we set τ ← {0, 1}2λ for every call to Sign
within the Sanit/Sign oracle.

Transition - Game 2 → Game 3: A distinguisher between these two games yields a distinguisher for the PRG
using a hybrid argument. Thus, we have |Pr[S2]− Pr[S3]| ≤ qsνind-prg(λ), where qs is the number of calls
to the PRG.

Game 4: As Game 3, but we abort if a tag τ was drawn twice. Let this event be E4.
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Transition - Game 3 → Game 4: As the tags τ are drawn uniformly random, event E4 only happens with
probability q2

t

22λ , where qt is the number of drawn tags. |Pr[S3]− Pr[S4]| ≤ q2
t

22λ follows.
Game 5: As Game 4, but instead of hash, and then adapting, the inner chameleon-hashes, directly hash

(i,m[i], pksig).
Transition - Game 4 → Game 5: Assume that the adversary can distinguish this hop. We can then construct

an adversary B which wins the indistinguishability game. B receives pkc as it’s own challenge, B embeds
pkc as one of the pkich (where m[i] is admissible). It proceeds honestly with the exception that it uses
the HashOrAdapt oracle to generate that inner hashes. Then, whatever A outputs, is also output by B.
|Pr[S4]−Pr[S5]| ≤ qhνch-ind(λ) follows, where qh is the number of admissible inner hashes due to a standard
hybrid argument, i.e., exchange the public keys one-by-one.

Game 6: As Game 5, but we abort if a x1 was drawn twice. Let this event be E6.
Transition - Game 5 → Game 6: As each x1 is drawn completely randomly, event E6 only happens with

probability q2
t

2λ , where qt is the number of signatures requests. |Pr[S5]− Pr[S6]| ≤ q2
t

2λ follows.
Game 7: As Game 6, but all ch encrypt a 0 in the Sanit/Sign oracle. For sanitization of those signatures, the

values are stored, and then used without decrypting ch. However, the oracle still enforces the correct ADM.
Transition - Game 6 → Game 7: A standard reduction, using hybrids, shows that this hop is indistinguishable

by the IND-CCA2-Security of the encryption scheme used. |Pr[S6]−Pr[S7]| ≤ qhνind-cca2(λ) follows, where
qh is the number of generated ciphertexts by Sanit/Sign. Note, requests for other pksigs can simply be
decrypted using the decryption oracle provided.

Game 8: As Game 7, but we no longer sign the values x1 in Sanit/Sign and obtain t← {0, 1}λ.
Transition - Game 7 → Game 8: A distinguisher between Game 7 and Game 8, must have made a random-

oracle call (x1, σh, pkΣ) such that VerifyΣ(pkΣ , x1, σh) = true. Let this event be E8. We can then construct
an adversary B which breaks the strong unforgeability of the signature scheme with Pr[E8]. In the first
step, B takes over control of the random oracle H, and simulates honestly, but records the queries. It then
receives pkc as the challenge key, which is embedded into pkΣ . Every required signature generation is
delegated to the signing oracle provided. However, as we have already ruled out collision for the x1 we
have a valid forgery for the signature scheme. |Pr[S7]− Pr[S8]| ≤ νseunf-cma(λ) follows.

Game 9: As Game 8, but instead of hashing and then adapting the outer hash, we directly hash the message,
i.e., (0, x0, x1, [pkch]1,`,m, τ, `, [h]1,`, ch, [c]1,`, [r]1,`, pksig).

Transition - Game 8 → Game 9: Assume that the adversary can distinguish this hop. We can then construct
an B which wins the indistinguishability game. In particular, the reduction works as follows. B receives
pkc as it’s own challenge, embeds pkc as pkch, and proceeds honestly with the exception that it uses
the HashOrAdapt oracle to generate the outer hashes. Then, whatever A outputs, is also output by B.
|Pr[S8]− Pr[S9]| ≤ νind-ch(λ) follows.

We are in the case b = 1, yet do not give out any useful information at all. As each hop only changes the view
negligibly, transparency is proven.

Strong Signer-Accountability. We prove that our construction is strongly signer-accountable by a sequence of
games.
Game 0: The original strong signer-accountability game.
Game 1: As Game 0, but we abort if the forgery of the signer contains two distinct “inner” signatures, i.e.,

σ′′∗ contained in π∗ and σ′∗ contained in σ∗, on the same message m∗ = (x∗0, x∗1, [pk∗ch]1,`∗ , [r∗]0,`∗ , τ∗, c∗h,
[c∗]1,`∗ , [h∗]0,`∗) contained in π∗, or the sanitization oracle saw a different “inner” signature (for the same
pk∗) as provided in π∗. Let this event be E1.

Transition - Game 0 → Game 1: Assume that E1 is non-negligible. We can then construct an adversary B
which breaks the uniqueness of the signature scheme. Namely, we have σ′∗ and σ′′∗ 6= σ′∗ which are valid
for the same message m∗ = (x∗0, x∗1, [pk∗ch]1,`∗ , [r∗]0,`∗ , τ∗, c∗h, [c∗]1,`∗ , [h∗]0,`∗). Thus, B can return (pk∗Σ ,m∗,
σ′′∗, σ′∗) as its own forgery attempt. |Pr[S0]− Pr[S1]| ≤ νdsig-uniqueness(λ) follows. pk∗Σ is contained in pk∗.
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Game 2: As Game 1, but we abort if the sanitization oracle draws a tag τ ′ which is in the range of the PRG.
Let this event be E2.

Transition - Game 1 → Game 2: This hop is indistinguishable by a standard statistical argument: at most
2λ values lie in the range of the PRG. |Pr[S1] − Pr[S2]| ≤ qs2λ

22λ = qs
2λ follows, where qs is the number of

sanitizing requests. Note, this also means, that there exists no valid pre-image x0.
Game 3: As Game 2, but we now abort, if a tag τ was drawn twice. Let this event be E3.
Transition - Game 2 → Game 3: As the tags are drawn uniformly from {0, 1}2λ, this case only happens with

negligible probability. |Pr[S2]−Pr[S3]| ≤ q2
s

22λ follows, where qs is the number of sanitization oracle queries.
Game 4: As Game 3, but we now abort, if the adversary was able to find (pk∗, π∗,m∗, σ∗) for some (0, x∗0, x∗1,

[pk∗ch]1,`,m∗, τ∗, `∗, [h∗]1,`, c∗h, [c∗]1,`, [r∗]1,`, pk∗) in (m∗, σ∗), which was never returned by the sanitization
oracle. Let this event be E4.

Transition - Game 3 → Game 4: In the previous games we have already established that the sanitizer oracle
will never return a signature with respect to a tag τ in the range of the PRG. Thus, if event E4 happens, we
know by the conditions checked in Game 2, and Judge, that one of the tags (i.e., τπ in π∗ by construction)
was chosen by the adversary, which, in further consequence, implies a collision for CH. Namely, assume that
E3 happens with non-negligible probability. Then we embed the challenge public key pkc in pkch, and use the
provided adaption oracle to simulate the sanitizing oracle. If E4 happens we can output ((0, x0, x1, [pkch]1,`,
m, τ, `, [h]1,`, ch, [c]1,`, [r]1,`, pk∗), r0, (0, x∗0, x∗1, [pk∗ch]1,`,m∗, τ∗, `∗, [h∗]1,`, c∗h, [c∗]1,`, [r∗]1,`, pk∗), r′0, h0), as a
valid collision. These values can simply be compiled using π∗, m∗, and σ∗. Note, this also means that the
adversary cannot tamper with the “inner” hashes, while each message returned by the sanitization oracle
is new, as we excluded tag-collisions. |Pr[S3]− Pr[S4]| ≤ νch-coll-res(λ) follows.

Game 5: As Game 4, but abort, if the adversary outputs a forgery, where only the hash h0 is modified. Let
this event be E5.

Transition - Game 4 → Game 5: As we have already ruled out collisions not provided by the collision-finding
oracle, there must be two different hashes h0 for the outer hash. However, since the CHash algorithm is
deterministic with respect to a fixed random tape t (which is uniquely determined by π∗). This implies that
there exist two signatures σ∗h 6= σ′∗h where (σ∗h, x∗1, pk∗), and (σ′∗h , x∗1, pk∗), must yield different hashes. Both
are valid signatures for the same x∗1 under pk∗, as otherwise Judge does not output San. Note, altering the
other values have already been excluded in the prior hop, as they are hashed and signed. Both signatures
can simply be extracted from π∗, and the transcript to the sanitization oracle. This is possible, as the
sanitization oracle only proceeds if the randomness is calculated correctly, while Judge enforces that all
values are equal, and we already established that collisions can only be produced by the sanitization
oracle. These signatures can directly be used to break the uniqueness of the signature scheme w.r.t. to
pk∗Σ , contained in pk∗, and x∗1. |Pr[S4]− Pr[S5]| ≤ νdsig-unique(λ) follows.

Game 6: As Game 5, but we abort if the adversary outputs a forgery where only the randomness r0 changed,
i.e., we have previously generated a signature with respect to r0 so that r0 6= r∗0. Let this event be E6.

Transition - Game 5 → Game 6: If the abort event E6 happens, the adversary breaks uniqueness of the
chameleon-hash. In particular, we have values (0, x∗0, x∗1, [pk∗ch]1,`∗ ,m∗, τ∗, `∗, [h∗]1,`∗ , c∗h, [c∗]1,`∗ , [r∗]1,`∗ ,
pksig) in the forgery which also correspond to some previous query, but r0 from the previous query is
different from r∗0. Obtaining ppch from a uniqueness challenger thus shows that E5 happens with exactly
the same probability as the adversary breaks uniqueness of the chameleon hash along with pk∗ch contained
in pk∗. Thus, we have that |Pr[S5]− Pr[S6]| ≤ νch-unique(λ).

In the last game the adversary can no longer win, and each hop only changes the view negligibly. This
concludes the proof.

Sanitizer-Accountability. We prove that our construction is sanitizer-accountable by a sequence of games.

Game 0: The original sanitizer-accountability definition.

21



Game 1: As Game 0, but we abort if the adversary outputs a forgery (m∗, σ∗, pk∗) with σ∗ = (σ′∗, x∗0,
x∗1, [pk∗ch]1,`∗ , [r∗]0,`∗ , τ∗, c∗h, [c∗]1,`∗ , [h∗]0,`∗), where (σ′∗, (x∗0, x∗1, [pk∗ch]1,`∗ , [h∗]0,`∗ , c∗h, [c∗]1,`∗ , pk∗san, pk∗sig, `∗))
was never obtained from the signing oracle.

Transition - Game 0 → Game 1: Let us use E1 to refer to the abort event. Clearly, if (σ′∗, (x∗0, x∗1, [pk∗ch]1,`∗ ,
[h∗]0,`∗ , c∗h, [c∗]1,`∗ , pk∗san, pk∗sig, `∗)) was never obtained by the challenger, this tuple breaks the strong
unforgeability of the underlying signature scheme. The reduction works as follows. We obtain a challenge
public key pkc from a strong unforgeability challenger and embed it as pksig. For every required “inner”
signature σ′ (and σh), we use the signing oracle provided by the challenger. Now, whenever E1 happens,
we can output σ′∗ together with the message protected by σ′∗ as a forgery to the challenger. That is, E1
happens with exactly the same probability as a forgery. Further, both games proceed identically, unless E1
happens. Taking everything together yields |Pr[S0]− Pr[S1]| ≤ νseunf-cma(λ).

Game 2: As Game 1, but we abort if the adversary outputs a forgery where only the randomness r0 changed,
i.e., we have previously generated a signature with respect to r0 so that r0 6= r∗0. Let this event be E2.

Transition - Game 1 → Game 2: If the abort event E2 happens, the adversary breaks uniqueness of the
chameleon-hash. In particular, we have values (0, x∗0, x∗1, [pk∗ch]1,`∗ ,m∗, τ∗, `∗, [h∗]1,`∗ , c∗h, [c∗]1,`∗ , [r∗]1,`∗ ,
pksig) in the forgery which also correspond to some previous query, but r0 from the previous query is
different from r∗0. Obtaining ppch from a uniqueness challenger thus shows that E2 happens with exactly
the same probability as the adversary breaks uniqueness of the chameleon hash along with pk∗ch contained
in pk∗. Thus, we have that |Pr[S1]− Pr[S2]| ≤ νch-unique(λ).

In Game 2 the forgery is different from any query/answer tuple obtained using Sign. Due to the previous
hops, the only remaining possibility is a collision for h∗0 = h′∗0 , i.e., we have CHCheck(pkch, (0, x∗0, x∗1, [pk∗ch]1,`∗ ,
m∗, τ∗, `∗, [h∗]1,`∗ , c∗h, [c∗]1,`∗ , [r∗]1,`∗ , pksig), r∗0, h∗0) = CHCheck(pkch, (0, x′∗0 , x′∗1 , [pk′∗ch]1,`′∗ ,m′∗, τ ′∗, `′∗, [h′∗]1,`′∗ ,
c′∗h , [c′∗]1,`′∗ , [r′∗]1,`′∗ , pksig), r′∗0 , h′∗0 ) = true. In this case, the Judge algorithm returns San and Pr[S2] = 0 which
concludes the proof.

Strong Invisibility. We prove that our construction is strongly invisible by a sequence of games.

Game 0: The original invisibility game, i.e., the challenger runs the experiment as defined.
Game 1: As Game 0, but we abort if the adversary queries a valid message-signature pair (m∗, σ∗) which

was never returned by the signer or the sanitizer oracle to the sanitization or proof generation oracle.
Transition - Game 0 → Game 1: Let us use E1 to refer to the abort event. Clearly, whenever the adversary

outputs such a new pair, we can output it to break unforgeability of our scheme, as this tuple is fresh.
However, we have already proven that this can only happen with negligible probability. |Pr[S0]−Pr[S1]| ≤
νsss-unf(λ) follows.

Game 2: As Game 1, but we internally keep all skich.
Transition - Game 1 → Game 2: This is only a conceptual change. |Pr[S1]− Pr[S2]| = 0 follows.
Game 3: As Game 2, but we encrypt only zeroes instead of the real skich in LoRADM independent of whether

block are admissible or not, if pksan = pk′san. Note, the challenger still knows all skich, and can thus still
sanitize correctly.

Transition - Game 2 → Game 3: A standard reduction, using hybrids, shows that this hop is indistinguishable
by the IND-CCA2-Security of the encryption scheme used. |Pr[S2]−Pr[S3]| ≤ qhνind-cca2(λ) follows, where
qh is the number of generated ciphertexts by LoRADM. Note, requests for other pksigs can simply be
decrypted using the decryption oracle provided. This is possible, as pksig is part of the label and signed.
Thus, the label must be different for any other pksig, even if the adversary “re-uses” ciphertexts. This
allows to simulate correctly, as the views are equal.

At this point, the distribution is independent of the LoRADM oracle, i.e., completely independent of the bit b.
As each hop only changes the view of the adversary negligibly, our construction is thus strongly invisible. ut
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